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Abstract: Aiming at the problem of source-load uncertainty caused by the increasing penetration of
renewable energy and the large-scale integration of electric vehicles (EVs) into modern power system,
a robust optimal operation scheduling algorithm for regional integrated energy systems (RIESs) with
such uncertain situations is urgently needed. Based on this background, aiming at the problem of
the irregular charging demand of EV, this paper first proposes an EV charging demand model based
on the trip chain theory. Secondly, a multi-RIES optimization operation model including a shared
energy storage station (SESS) and integrated demand response (IDR) is established. Aiming at the
uncertainty problem of renewable energy, this paper transforms this kind of problem into a dynamic
robust optimization with time-varying parameters and proposes an improved robust optimization
over time (ROOT) algorithm based on the scenario method and establishes an optimal scheduling
mode with the minimum daily operation cost of a multi-regional integrated energy system. Finally,
the proposed uncertainty analysis method is verified by an example of multi-RIES. The simulation
results show that in the case of the improved ROOT proposed in this paper to solve the robust
solution of renewable energy, compared with the traditional charging load demand that regards the
EVs as a whole, the EV charging load demand based on the trip chain can reduce the cost of EV
charging by 3.5% and the operating cost of the multi-RIES by 11.7%. With the increasing number of
EVs, the choice of the starting point of the future EV trip chain is more variable, and the choice of
charging methods is more abundant. Therefore, modeling the charging demand of EVs under more
complex trip chains is the work that needs to be studied in the future.

Keywords: integrated energy system; electric vehicle; energy storage system; robust optimization;
renewable uncertainty; optimal scheduling

1. Introduction

In the face of increasingly serious energy and environmental problems, building an
energy-sustainable and environmentally friendly development strategy is a key issue of
common concern in the world today [1,2]. A regional integrated energy system (RIES),
which is based on a renewable energy source (RES) and combined cooling heating and
power (CCHP), can improve energy efficiency due to its complementary characteristics
between energy sources and energy ladder utilization characteristics [3,4]. However, with
the increasing penetration of RES and the massive access of electric vehicles (EVs) as
loads to RIES, the RIES faces more uncertainties due to the RES’s inherent randomness
and volatility and EVs’ irregular charging time and charging power. Based on the above
background, it is of great theoretical and practical significance to study the RIES optimal
scheduling method considering the uncertainty of RESs and EVs [5].

Large-scale EV access to a power grid will bring problems such as increased network
loss and decreased power quality to the power grid [6]. In reference [7], a model considering
advanced support vector machine (SVM) and hybrid electric vehicle (EV) charging demand
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is proposed, and the influence of hybrid EV charging on the whole system is studied. Con-
sidering the dual attributes of EVs with load and energy storage equipment, reference [8,9]
proposed that the orderly participation of EVs in grid activities can reduce the load peak—valley
gap and improve the scheduling flexibility. Reference [10] proposes that EVs, as a flexible
energy storage carrier, can smooth the energy fluctuations caused by the uncertainty of RESs,
and through the guidance of electricity price, EVs can improve the consumption rate of the
RES to a certain extent. For the coordinated scheduling problem of EVs in integrated energy
system, reference [11] proposed an EV charging behavior framework based on time-of-use
(TOU) electricity price guidance to attract EVs users to charge during the valley price period.
On the basis of the TOU electricity price, reference [12] proposes that when the load is at the
peak, the EVs can be used as a power source to discharge to the system to a smooth load
curve. Example results show that a certain scale of EVs can be used as a backup power
source to alleviate the system operating pressure during peak periods. Reference [13] also
proposes a decentralized EV scheduling strategy based on the TOU electricity price. In
reference [14], an optimization model with the objective of minimizing household energy
consumption is established for EV home users with self-use energy storage equipment.
Experimental results show that the reasonable use of EV charging and discharging can
reduce the cost of energy consumption. However, most of the current research only focuses
on the charging and discharging behavior of an EV at a fixed time of place and does not
fully consider the characteristics of the non-fixed-time random charging of an EV during
use, which is very common in the use of EV.

Due to the unpredictability of the natural environment in which RES equipment is
located, there is a high uncertainty in RES output, which is one of the main reasons for
the uncertainty of the power supply side. In order to solve the uncertainty of RES, refer-
ence [15] proposed a prediction method based on a deep learning approach (DLA) from the
perspective of prediction. Reference [16] by assigning the probability to chance constraint
of each constraint event, the complex combinatorial chance constraint is transformed into
a severalty chance constraint for solution. Reference [17] uses the method of support
vector machine to identify zero-probability events, improve the average distribution of
intersection probability, and improve the reliability of the consequences. In reference [18],
an algorithm based on Wasserstein Gan with gradient penalty (WGAN-GP) is proposed
to delineate the scenarios of renewable energy. In reference [19], the uncertainty problem
is modeled by improving the generative adversarial network. In reference [20], they pro-
pose a two-stage distributed robust optimization algorithm and integrate a data-driven
approach to deal with these uncertainty problems. In reference [21], a two-stage model is
established to solve the uncertainty of a RES and the economy of power grid operation, and
experimental results show that this model can achieve system robustness while reducing
operating costs.

At present, most of the research on the charging behavior of an EV connected to the
power grid regards the EV as a whole part and conducts charging and discharging behavior
at a fixed time, while ignoring the randomness of the individual charging behavior of
the EV; meanwhile, most of the research on the uncertainty of RESs based on scenario
method does not consider whether data after scenario reduction are robust. Aiming at these
problems in current research, in this paper, the charging demand model of EV is established
based on the trip chain theory, and an improved robust optimization over time (ROOT)
algorithm based on the scenario method is proposed to solve the uncertainty problem of
RESs. The main contributions are as follows:

1. Aimed at the randomness of EV charging behavior, a charging demand model of an
EV based on trip chain theory is proposed;

2. Aimed at the RES uncertainty problem, an improved robust optimization over time
algorithm based on the scenario method is proposed;

3. Based on the existing comprehensive demand response, a cold-heat—electric alterna-
tive integrated demand response (IDR) model is proposed.
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The rest of this paper is structured as follows. Section 2 introduces the basic structure of
the RIES, IDR and shared energy storage station (SESS). In Section 3, the EV charging demand
model based on the trip chain theory is established. In Section 4, the algorithm for solving the
uncertainty of RES is proposed. In Section 5, the optimization model is established. Section 6
presents example analysis and finally, the conclusions are given in Section 7.

2. Structure Modeling of RIES Based on SESS and IDR
2.1. Overall Framework of RIES

The structure of RIES is shown in Figure 1. It is known from Figure 1 that the RIES in-
cludes several CCHPs in different regions, and each CCHP is connected to the external power
network, gas network and water network. Each CCHP provides cold, heat and electricity
energy supply for their respective energy users. At the same time, a power transmission node
is established at each CCHP, which is connected to the SESS through the node. Because there
is no direct electrical interaction between each CCHP in this region, CCHP can only interact
with the external power grid (EPG) or SESS through the power network.

P r'y r'y r'y
Wr—= i )
User 2
P44 1 P44
CCHP 1
Regional 1 Regional 2 Regional i

A

Y
Node N Node N-1
% == Electricity

@ﬁm [ No§e2 | e ] No¢dei |
—>_<J

aas
.. .. —>» Water
—> Hea
Regional N Regional N-1 — Cooling
Q T A T A Y,
\_ Y Y J

Figure 1. The structure of RIES with SESS.

For any CCHP i(i € N) shown in Figure 1, its internal structure is shown in Figure 2.
It is known from Figure 2 that CCHP is mainly composed of the following components:
energy supply, energy conversion, energy demand and energy exchange. The energy
supply part comprises a wind turbine (WT), photovoltaic (PV), gas turbine (GT) and gas
boiler (GB), and EPG, which is connected to the CCHP via a transformer. The energy
conversion part comprises a waste heat boiler (WHB), electric boiler (EB), absorption chiller
(AC), heat exchanger (HE), electrical chiller (EC) and electric storage (ES). The energy
demand part comprises electrical, cooling and heating loads. The energy exchange part
mainly comprises the SESS, EV, other CCHPs, external energy market and carbon market,
etc. The CCHP receives the natural gas and the electric energy provided by the EPG and
RES included in the energy supply and converts it into the energy needed by the user
through the energy coupling device of the energy conversion, and finally provides it to the
energy demand. At the same time, the CCHP also participates in other forms of energy
interaction mentioned in the energy exchange. This paper mainly studies the interaction
between the CCHP, EV and SESS. The detailed modeling work of the equipment in CCHP
can be found in reference [22], which will not be introduced in this paper.
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Figure 2. The structure of the CCHP.

2.2. Modeling of SESS

An SESS usually refers to a model in which a public energy storage device provides
energy storage services to multiple users [23,24]. An SESS utilizes the difference and com-
plementarity of load curves of different users, and through the integration and optimization,
to improve the utilization of energy storage equipment, the level of RES consumption and
the user’s benefit, so as to realize value creation [25-27]. An SESS should satisfy the
following constraints.

2.2.1. Power Continuity Constraint

Under the action of the user’s charging and discharging behavior, the internal energy
of SESS should remain continuous.

SESS I SESS bs pSESS,ab 1 SESS el
Ey=r = (1 - USOESES)Etfl + (nggssPy 7" = e Py AL, 1
SESS

where E7ESS and EPESS are the state of charge (SOC) of the SESS at time t and t — 1, respec-

tively; PPES940S and PSESS7¢1ed e the charge and discharge power at time ¢, respectively;

17150155;5, 17%%55 g and 172%‘%“5 are the self-discharge, charge and discharge efficiency, respectively;

and At is the scheduling time interval.

2.2.2. SOC Constraints
The SOC of SESS cannot exceed the design parameters of its equipment.

ESESS _—

min pSESS SESS max FSESS
{‘TSESSE < EPRYY < ogEssE
start — YSESSTmax

max max (2)
init ESESS _ ESESS ’
— “end

where ESESS, ESESS and Effdss are the maximum, initial and final SOC of the SESS, respec-

tively; o, o2 and aé’gg s are the lower limit, upper limit and initial coefficient of the

SOC, respectively.
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2.2.3. Charge and Discharge Constraints

There can be no simultaneous charging and discharging behavior between the SESS

and the user.

SESS,abs SESS77SESS
OSPt Spmax uabs

SESS,relea SESS77SESS
0< Pt < PmaX urelea (3)

uSESS + uSESS <1

abs relea —

USESS € {0,1}usEss € {0,1}

relea

where P3ESS is the maximum power of the SESS; U{ffsss and

discharging state bits of the SESS at time t, respectively.

UISESS

ol are the charging and

2.3. Modeling of IDR

An IDR is an important means of RIES load demand management [28]. It aims to
guide power users and load aggregators to adjust energy consumption strategies through
market-oriented means, actively participate in power grid valley filling, and improve the
reliability of power system operation. This paper divides the IDR load into a reducible load
(RL), transferable load (TL) and substituted load (SL).

2.3.1. Modeling of RL

Energy users determine whether the current load is a RL by comparing the changes in
energy prices during the scheduling period. RL can be described as follows:

e eQ 2 .. p] B p?
APrp; = APgp,; Y Ere(ij) 0| 4)
j=1 j

where APy Li is the variation in RL after IDR; API%OL,i is the initial RL; Egy (i, j) is the price
elasticity matrix of the RL; p; is the energy price at time j; and p? is the initial energy price
at time j.

The constraint of RL is as follows:

0< APIe{L,i < APIEQL,maxl (5)

where AP¢

) . .
RL max 1S the maximum value of APRL,i'

2.3.2. Modeling of TL

TL refers to those loads the access time of which users can flexibly adjust according to
their demand price. The TOU energy price is used as the signal to guide users to transfer
the load from the peak price period to valley price period. TL can be described as follows:

0 | & Pi —p?
AP%L,i = AP%L,i ZETL(IIJ) pQ ’

(6)

j=1 j

where AP%L ;18 the variation in the TL after IDR; AP%OL ;s the initial TL; Er (i, j ) is the price
elasticity matrix of the TL.
The constraint of the TL is as follows:

0 < APpp; < APTp g )

e 3 3 e
where APTL,maX is the maximum value of APTL,i‘
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2.3.3. Modeling of SL
For those loads that can be directly supplied by electric energy or cold /heat energy,

when the electricity price per unit of energy supply is less than the price of cold/heat
energy, electric energy is used to substitute cold /heat energy; otherwise, cold/heat energy
is used to substitute electric energy. SL can be described as follows:

s Lc(h
{Apt’e = _Se,h(c)APts «) (8)

€e,c(h) = qu)E/vc(h) Pe(n)

where AP and AP} () are the substituted electrical load and corresponding substituted
cold /heat load, respectively; €e,c(h) is the electro-cold /heat substitution coefficient; v, and
U¢(ny are unit calorific values of electric and cold/heat, respectively; and ¢, and ¢ ;) are
the energy efficiency of electric and cold/heat, respectively.

The constraints of SL are as follows:

{AP;;; < AP* < AP, o

AP < Apse) < Apse)

min

where AP and APyjy are the minimum and maximum substitution values of the sub-
c(h)

stituted electrical load, respectively; APIST’Er(Ih) and AP.5Y are the minimum and maximum
substitution values of the substituted cold /heat load.

3. EV Modeling Based on Trip Chain Theory
3.1. Basic Theory of EV Trip Chain

The trip chain simulates a series of behavioral characteristics during the period from
the initial point to the terminal point [29]. The EV trip chain is defined as a space-time
chain formed by linking the time series and spatial state of the EV travel process, with the
residence of the EV user as the starting point and terminal point. Figure 3 is the schematic
diagram of the EV trip chain.

|

| s e s s I
E O ; 7 |
I a— O———0 23,12 O .
el i i o 1
4 ol [P 4,
| e 1 Y Destglanon o 2.31-2 > Dest;lanon e 1
IStart point 1 -1 End pointl
|

Figure 3. Schematic diagram of the EV trip chain.

The variables describing the spatial transfer of EV are called spatial variables, including
destination D; and driving distance d;. The variables describing the change in the EV
driving and stopping state are called time variables, including the start time of driving T},
end time of driving T}, driving time Tf and parking time Ttp .

Based on the actual EV usage environment, it is known that EV travel behavior has the
memoryless nature of Markov chains. That is, the destination Dggr (i) of an EV driving at
time i is only related to the last driving destination Dggr (i — 1), and is not related to any of
the travel destinations Dggr(n),n € [1,--- ,i — 2]. Based on this fact, the trip chain of EV
can be regarded as a special class of Markov chain. The state of an EV at time i is E;, and
the state at the next moment is E;. According to the Markov chain theory, the probability
from E; to E; is as follows:

P(E; — E;) = P(Ej|E;) = pij, (10)
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where p;; is the probability of EV transferring from the current state to the next state. Based
on (1), the space transition probability matrix of EV can be expressed as follows:

pu(t) - pu(t) 0<p;j<1pi=0
p(t) =1 : A%

: i/jzllzl"'/nr (11)
pmi(ti) - pan(ti) /

L pij = 1

In order to construct a reasonable EV trip chain, based on the data of the national
household travel survey (NHTS), the NHTS divides the parking places of vehicles within
one day into three types: home, work and other, and according to the data of the NHTS, the
probability of EV in different parking places at the initial state (t = 1) is shown in Table 1.

Table 1. The probability of an EV in a different parking place at the initial state.

Initial Places Dggr Home Work Other
Probability p 0.9810 0.0027 0.0163

3.2. Modeling of EV Trip Chain

According to the trip chain theory, the following models can be established. The
probability distribution function (PDF) of T} is shown as follows:

F(T]) = <= exp|~(T§ - /207, (12)

1
V2mo
where y and o are the mathematical expectation of and variance in PDF, respectively.

The Ttd obeys the normal distribution, and its PDF is as follows:

£(1) = gz ep—{ (1) — ]/ (27) } (13)

The d; can be calculated by driving time Tf and average speed va. The average
driving speed is affected by many factors, such as real-time traffic conditions. According
to <China’s major urban traffic analysis report>, the average speed v,y of automobiles in
Lanzhou is 35.17 km/h. Similarly, Tf can be obtained by summing T} and Ttd .

The PDF of the home area parking time /" , working area parking time T,"” and other
area parking time T, are shown as follows:

e  The PDF of the home area parking time:

pho_ 1153 (b \MFT sy (14)
T 195787 \ 195.787 '

e  The PDF of the working area parking time:

z = (T} - 438.445) /164.506
(15)

exp {7(170.2342)4‘27] (1-0.2342)3% 7
164506

wp _
T, " =

e  The PDF of the other area parking time:

z = (T{" - 438.445) /164506
(16)

op exp[_(1_0.234z)4-27] (1_0'2342)3427 ’
U 64506

The spatial variable is determined by the actual engineering application environment,
and the time variable is obtained by (12)~(16). Based on the above data, a complete EV trip
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chain can be constructed to obtain the EV charging load demand of each charging station
in a scheduling day.

4. Uncertainty Analysis of Renewable Energy Based on Scenario Method and Improved
Robust Optimization over Time

In the actual engineering environment, there are many uncertain factors affecting
RES. Therefore, from the perspective of cybernetics, this paper regarded a WT and PV as a
kind of time-varying factor, transformed the uncertainty of an RES into a kind of dynamic
optimization problem with time-varying parameters, and focused on the robustness of
output data in the time domain. ROOT is a new algorithm for solving dynamic optimiza-
tion problems with time-varying parameters. Its central idea is to find a time-domain
robust solution and make the solution applicable to a variety of changing environments to
improve the stability and robustness of the system operation. Therefore, the ROOT algo-
rithm is more feasible than the traditional optimization algorithm in practical engineering
problems [30,31]. At the same time, this paper used the Latin hypercube sampling (LHS)
and backward reduction (BR) scenario method as a pre-method to establish the renewable
energy output curve, which can make the time-varying factors transformed by the wind
power output curve and the photovoltaic processing curve contained in the established
dynamic optimization problem as close as possible to the actual output of renewable energy
and obtain a more realistic time-domain robust solution.

4.1. Scene Analysis Method

The scene analysis method mainly includes two parts: scene generation and scene
reduction. Scene generation refers to the large-scale scenarios with uncertain characteristics
obtained by sampling according to the PDF or statistical characteristics of the research
object, which can be represented by the set S = {S1,S,,- - -, Sy }. In this paper, LHS was
used as a method for scene generation. Scene reduction reduces the number of similar
scenes by analyzing the data set of set S, obtains the expected number of scenes, and
reduces computational complexity. In this paper, BR was used as a method for scene
reduction. The set K = {Ky, Ky, - - -, Kpr}, composed of a small number of classical scenes,
was obtained by BR, which can represent the random variables of the original scene to a
large extent. The process is shown in Figure 4.

Scene generation Scene reduction Scenarios
Historical based on LHS based on BR Cluster and Curving Output
data method, obtain the method , obtain the corresponding fitting Data
initial scene set S classical scene set K probability p

Figure 4. Process of scenario analysis.

4.1.1. Scene Generation Based on LHS

LHS can divide a large interval into several fixed intervals, generates a probability
value Py, in each interval [m/I, (m+ 1) /1], then reorders the intervals according to the
probability value of each interval. LHS was used to sample multiple renewable uncertain
data at the hourly level, and the sample set was constructed by using sampling results.

4.1.2. Scene Reduction Based on BR

In order to merge the similar scenes more effectively, a scene reduction model based
on BR was constructed to process the large amount data. We defined the stochastic scenario
Wy = (0bjiy1,00jm2, - -+ ,0bjmt, - -+ ,0bjy 1), Where objy, s is the reduced object at time # in
m-th scene; then, we defined the probability of the occurrence of scenario wy as p,. The
distance between w,,, and w, can be described as follows:

d(wm,wn) = Z(wm,t - wn,t)zr (17)
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The objective of BR is to minimize the probabilistic distance between the set of scenes
before reduction and the set of scenes retained after reduction, which can be described
as follows:

J
FPR = min)_ pid (w;, w;)j € ], (18)
i=1

where | is the set of deleted scenes for scene reduction.

4.1.3. Curving Fitting

According to the number of scenarios Cluster; obtained from the scenario reduction
and probability of occurrence of the corresponding scenarios p;, it is possible to calculate

optimal RES output fitting curve Pi‘f\t/,oTz{ tp V, which can be described as follows:
WT/PV <
Pliopt = = Y (Cluster; x p;), (19)

c=1

where C is the number of scenes after scene reduction, which is specified by the decision

PWT /PV
it,opt

The specific steps of the scene analysis method proposed in this paper are shown in Figure 5.

maker. Then, we could fit curve , and the algebraic expression could be obtained.

Randomly disrupt data

I ! Optimal scene |
Generate several 0 - 1 I Jo=Dik=1 I ptin I
scenes based on LHS | The final reduction I JI-P calculation based on |
; I']| |_scenes and probability
¢ number is 7 . | | :
v : | |
|

in the 0 - 1 scenes Find the scene /, that

satisfies equation (18), |

v

I
I
I
|
|
I
I
I
|
I
I
I
I
|
. . I
operation to obtain -
I
|
|
I

|
I
I
I
! |
— || and move it to the scene I
Fitting parameters of | set J |
renewable energy : = |
¢ | Y I
€S _ |
Inverse function : @ k=k+1 |
| No |
renewable scenes : p=p,+ 3 p :
. (/) .
Scene generation I & Scene reduction |
L __ basedonlHS |, _________ | based on BR _|

Figure 5. The specific steps of scenario analysis.

4.2. Uncertainty Analysis of Renewable Energy Based on the Scenario Method and Improved
Robust Optimization over Time

4.2.1. Description of Renewable Uncertainty Problem

The optimal scheduling result of the RIES is based on the establishment of robustness,
and robustness requires RIES to be able to maintain stability under different operating
environments. Therefore, this paper considered predicting the minimum output of the RES.
According to the fitting curve of RES output obtained by LHS and BR, the optimization
problem with time-varying parameters was established as follows:
PRC = minf (PT+ PY), (20)

1
where P;}G is the output of renewable generation; f is the objective function; and and
pLY
1,t
Suppose that P;;" and P};V are constants that remain constant, and each change only occurs
at the scheduling time point. That is, in a fixed period of time [0, T], the optimization
problem described by (17) can be re-formulated as follows: with the change in parameters

WT
Pi,t

are the output of the WT and PV, respectively, and are both time-varying parameters.
pyT
it
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PWT and PP "V, it is divided into a sequence of functions composed of multiple static
functlons These can be described as follows:

<f(P11,P11>,.. f(PZVtVT,P}’tV),.. f(PlT,P )> 1)

From the above analysis, it can be seen that for the dynamic optimization problem
with time-varying parameters shown in (21), ROOT has good engineering application value
because it can find the robust solutions of the time-varying elements of the WT and PV in
the time domain of the dynamic optimization problem. Therefore, ROOT was introduced
to solve the problem. However, most ROOT algorithms need to use future predicted fitness
values to find solutions with better robustness. However, the existing methods ignore the
influence of prediction error on the robustness of the solution, and the prediction error is
large, so it is difficult to find a better robust solution. In order to reduce the influence of
prediction error on the robustness of the solution, this paper makes full use of the change
trend of the fitness value of the solution in the historical moment and the future moment
and guides the algorithm to select the better solution of survival time (ST) and average
fitness (AF) [32] in the solution space. At the same time, by analyzing the characteristic
quantity of the change in the fitness value of the solution, the limitation of the prediction
error on the robustness optimization is reduced.

4.2.2. Improved ROOT

This paper introduces two new evaluation metrics: feasible direction (FD) and stability
degree (SD), to reduce the influence of the error of predicted value on the robustness
evaluation of ROOT solution. Based on these new evaluation metrics, a ROOT based on
the characteristics change in fitness value (ROOT-CCFV) was proposed, so that the optimal
solution obtained by ROOT-CCFV could have better robustness in multiple dynamic
environments.

e  Feasible direction

The FD RFP(x,t,p,q) is used to describe the change trend of function.

1 t+g
RPCotp) = g L Ifmi) = flx )], (22)
i=t—p

where x is the decision variable, t is the current moment; p is the number of historical
environments; g is the number of future environments; and « is the time-varying parameter.
The magnitude of FD is proportional to the change in objective function value: a large FD
indicates that current objection function value changes with more magnitude at that moment.

e  Stability degree
The SD R5P(x, t, p, q) is used to describe the stability of the predicted value.

RSD(x, £, p, q) = LL34)= [maxf(x ) +minf (x,,)]

, (23)
stle[lp]]E[t—i-lq]iye[ 00)

where 7 is the fluctuation threshold. When the SD is positive, it means that the objective
function of the solution in the current environment is not smaller than the mean value
curve of the known objective function.

e ROOT-CCFV

In ROOT-CCFV, the FD and SD of the solutions are firstly judged, and the better
solution is selected, then the robustness of the selected solutions is evaluated by ST and AF,
and finally the optimal robust solution satisfying the actual requirements is obtained. The
algorithm flow based on scenario method and ROOT-CCFV is shown in Figure 6.
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Figure 6. Process of ROOT-CCFV based on the scenario method.

5. Optimal Scheduling Model Considering EV and Renewable Energy Uncertainty
5.1. Optimization Objective

The objective functions are expressed as follows:
mlnCIES = Cg”d + Cgus + Cgm + CSESSI (24)

where Cgjy and Cgys are the electrical energy transaction expenditure and gas energy
transaction expenditure with EPG, respectively; Coy; is the operation and maintenance
expenditure of RIES; and Cs,s; is the energy transaction expenditure with SESS.

N gird Grid,buy gird HGrid,sell
_ , rid,se
Coria =) ) (Cb,t P — G Pij )At/ (25)
i=1t=1

where N is the number of CCHP; i is the ith CCHP; T is the length of the scheduling period;
t is the time period t; c‘gltrd is the purchase price of electricity energy from the EPG; Pﬁ”d’b”y

is the purchase power of electricity; cf/itrd is the price of electricity energy sold to the EPG;

Grid,sell
Pi,t

and is the sale power of electricity.
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N

Cous = ) i Cans [PGT ( THng) +HSE/ (:yl.GBHng)] At, (26)

i=1t=1

where cgs is the price of natural gas; PGT and HSP are the electrical and heat power

output of the GT and GB, respectively; 7T and 7°8 are the efficiencies of the GT and GB,
respectively; and H;¢ is the heating value of natural gas.

Com — Z Z (K(Erlnecpftlec + K(I)_,I,satngat + Kg:r(r)tldci(,:tom) At, (27)
i=1t=

where KElc, KHeat and K$9/ are the operating and maintenance expenditure of electric
energy equipment, heat energy equipment and cold energy equipment, respectively; PEZ“,

Hfeat and Cl.Ct"ld are the output of electric power, heat power and cold power of various
types of energy equipment, respectively.

SESS,ch SESS,di
Csess — Z 2 ( sessPlt cha Cg,etsspi,t ls)At, (28)
i=1t=
where ¢j?° is the purchase price of electricity energy from the SESS; ¢ is the price of

electricity energy sold to the SESS.

5.2. Operational Constraints

From the system structure shown in Figures 1 and 2, the constraints can be categorized
into CCHP equipment constraints, SESS equipment constraints and coupling constraints
between CCHP and the SESS, as shown in Table 2.

Table 2. Details of operational constraints.

Constraint Type

CCHP SESS Coupling Relationship

Equality constraints

1. Power bus energy balance constraints

CCHP-SESS energy

2. Electric storage energy Energy continuity constraint coupling constraint

relationship constraints

Inequality constraints

1. Equipment operating power constraints

1. Charging/discharging
power constraints

2. Electric storage charging/discharging /

power constraints 2. Capacity constraints

CCHP constraints are detailed in references [22,33], and SESS constraints are detailed
in Section 2.2. Compared with an RIES without an SESS, the RIES with an SESS increases
the energy coupling link between CCHP and the SESS, as follows:

N ‘
2 (PftESS,dls . PiiESS,cha) _ PtSESS,relea o PtSESS,abs’ (29)
i=1
where PSESS <1 and PSESS 45 are the charging and discharging of the ith CCHP using the
SESS at t1me perlod t.

In particular, the heat energy emitted by the WHB in CCHP constructed in this paper
simultaneously supplies the AC and HE, so it is necessary to add the heat energy balance
constraint between the WHB, AC and HE, as follows:

HinE/Uhe + Céc/’hc = Hi(,;tT'YgtUwhb/ (30)

where H EE is the heat output power of the HE; 7, is the efficiency of the HE; Ci‘ic is the
cold output power of the AC; 77, is the energy efficiency ratio of the AC; H fftT is the heat
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output power of the GT; ¢t is the thermoelectric ratio of the GT; and 77, is the efficiency
of the WHB.

5.3. Optimization Method

After introducing the RES power data obtained based on ROOT-CCFV into the optimal
scheduling model, the model became a mixed-integer linear programming (MILP) model.
The decision variables were the output of each piece of equipment in CCHPs, the input
and output of the SESS and the purchase and sale of energy from the EPG. At present,
the MILP model has a mature solution algorithm and can be directly solved by CPLEX
12.10, GUROBI 9.5.1 and other commercial software. In this paper, YALMIP20230622 +
CPLEX12.10 was used to simulate and solve the optimal scheduling problems.

6. Case Study
6.1. Simulation System

We took a comprehensive area as an example, as shown in Figure 7. The area was di-
vided into four sub-regions: the residential area (RA), commercial area (CA), industrial area
(IA) and office area (OA). Each sub-region had CCHP, and each CCHP was interconnected
with the SESS and EPG through the regional power gird to form an RIES.

_: Residential area Commercial area [€7]
> CCHP1 CCHP2 <
_: Office area Industrial area  [€
> CCHP4 CCHP3 <

=P Electricity == Gas =) Water

Figure 7. Structure partition diagram of RIES.

Among them, the RA and OA are not separately configured with an ES, and the CA
and IA are configured with independent ES. The parameters of each piece of equipment in
CCHP are shown in Tables A1 and A2. The historical output curve of the RES and historical
load curve in each region are shown in Figure 8.
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2 4 6 8 10 12 14 16 18 20 22 24 2 4 6 8 10 12 14 16 18 20 22 24
Commcxclal area Office area
T T 15,000 T T
—0—0- e
_o.8 -0-68-8.g8 o,
~BEOT 9\8’ oo 'y i 10,000
| o~ ° o g
B -0-© © -0/ _o-© e e © 900 °v-0-q S\ﬁ Z s000F ]
> 8 ©-0-0-© © N ~ e oo | 1
PP PSP e L L L L L L L 4 ’°'°.°..:8; = o-_ee —o—_oe b
0
2 4 8 10 IVZ 14 16 18 20 2 2 2 4 6 8 10 12 14 16 18 20 22 24
Time/h Time/h
PV —0— Electric load — e~ Heat load =@~ Cold load
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(a) (b)

Figure 8. The historical output curve of the RES and historical load curve in each region. (a) The output
and load data of the RA and CA. (b) The output and load data of the IA and OA.
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The parameters of the SESS are shown in Table A3, and the TOU price of EPG and the
SESS are shown in Tables A4 and A5. The price of natural gas was 2.46 CNY/m?, and the
calorific value of natural gas was 9.78 kWh/m?3. The scheduling period of each typical day
was 24 h.

6.2. Simulation Results and Analysis
6.2.1. Analysis of Charging Demand of EV

This paper considered the most important travel purpose of EV, supposing that EVs
drive up to four times a day and the last drive is to return to the RA. The spatial transfer
probability of the driving can be found in reference [29]. While ignoring traffic congestion
and short-term parking for non-main travel purposes, the EV can only be charged after
reaching the travel destination. This paper assumed that this region contained 2000 EVs,
the initial SOC of each EV was a random number of 0.6~0.8, the power consumption per
kilometer was a random number of 0.1~0.25 kWh, the EV battery capacity was a random
number of 25~35 kWh, and the maximum charging power of charging piles in each area
was 5 kW. The relationship between Ttd and d; is referred to in [34]. According to Section 3,
the EV charging demand in each region could be obtained, as shown in Figure 9.
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(a) (b)

Figure 9. The charging demand of EV in each region. (a) The charging demand of the RA and CA. (b) The
charging demand of the IA and OA.

As can be seen from Figure 9, the RA bears the largest demand of EV charging. The
charging valley was 05:00-07:00, and the charging peak was 16:00-18:00, which is in line
with the regularity of commuting and traveling for most users. Combined with Figure 7, it
can be seen that the IA was the farthest from the RA, so the IA had EV charging demand
start from 09:00, while the CA and OA had EV charging demand at an earlier time node.
Since it was assumed that the EVs return to the RA for the last trip, the other areas assumed
charging demand after 20:00 tended to zero. From the above analysis, it can be seen that the
method proposed in this paper can reflect the complex driving, parking rules and charging
demand of EV in the daytime, so that each region can obtain a value closer to the actual EV
charging demand, so as to better carry out the optimal scheduling work.

6.2.2. Analysis of the Effectiveness of ROOT-CCFV

Because each peak of the improved moving peak benchmark (mMPB) can change
autonomously, we could test the effectiveness of the dynamic optimization algorithms
when facing the dynamic environment well. This paper used mMPB as the test function
to verify the effectiveness of ROOT-CCFV compared with other ROOT algorithms. The
parameter setting of mMPB is detailed in reference [31]. We compared the methods in
references [31,32,35,36]. The results of the average time of robust solutions under different
algorithms are shown in Figure 10 and Table 3.
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Figure 10. The survival time of different algorithms under different fitness thresholds. (a) Fitness
threshold = 40. (b) Fitness threshold = 45. (c) Fitness threshold = 50.

Table 3. The average survival time of robust solutions under different algorithms.

Fitness Threshold
Algorithm
40 45 50
Jin’s ROOT [31] 1.53 1.11 0.69
Fu’s ROOT [32] 3.03 2.39 1.69
P’s ROOT [35] 3.35 2.46 1.82
D’s ROOT [36] 3.62 2.65 1.95
ROOT-CCFV 3.75 2.94 2.17

From Figure 10 and Table 2, it can be seen that the robustness of the solution obtained by
ROOT-CCEFV is better than other existing ROOT methods proposed in references [29,30,33]
when dealing with mMPB under different fitness thresholds. Taking the fitness threshold of 40
as an example, the average survival time of ROOT-CCFV under the current fitness threshold
was 145.1%, 23.8%, 11.9% and 3.6% higher than that of Jin’s ROOT, Fu’s ROOT, P’s ROOT and
D’s ROOT, respectively.

6.2.3. Analysis of RES Uncertainty under ROOT-CCFV Based on Scene Method

This section took the WT in the IA as an example to illustrate. Figure 11 shows
the process of the scene analysis method based on LHS and BR, where Figure 11a is the
generated wind speed in multiple scenarios based on LHS; based on BR, we reduced the
large-scale scene and calculated the probability of each scene after reduction, as shown in
Figure 11b; the output power of the WT in typical scenarios by (16) is shown in Figure 11c; and
Figure 11d fits the typical wind power output power curve obtained by the scenario method.
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Figure 11. Process of scene analysis method. (a) Scene generation based on LHS. (b) Scene reduction
based on BR. (c¢) Calculated typical outpower power. (d) Curving fitting.

Based on the fitting curve of the RES in each region, the ROOT-CCFV was used to
solve the optimal robust solution of the RES power output in each region. In order to verify
the robustness of ROOT-CCEFV, the algorithm was compared with stochastic optimization
(SO) and fuzzy optimization (FO). The confidence interval of FO was set to 0.95. The robust
solutions of RES output power under different algorithms are shown in Figures 12 and 13.

It can be seen from Figures 12 and 13 that due to the robustness requirements for the
stable operation of a RIES, the uncertainty prediction curves of the RES are slightly smaller
than the actual RES output curve. Compared with the other two comparison algorithms,
the prediction curve of ROOT-CCFV based on the scene method was closest to the actual
output curve. Compared with SO, the curve of ROOT-CCFV was smoother. This is because
under the ROOT-CCFV strategy, when the RES changes dynamically, the algorithm can
obtain a more robust solution through RfP and R5P. Compared with FO, ROOT-CCFV
can make the RIES obtain better economy under the premise of ensuring the robustness of
optimal scheduling.
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Figure 12. Robust solutions of the WT under different algorithms in the IA and OA.
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Figure 13. Robust solutions of PV under different algorithms in each region. (a) Robust solutions of
PV in the RA and CA. (b) Robust solutions of PV in the IA and OA.

6.2.4. Analysis of SESS Capacity Configuration Considering EV Charging Demand

In order to study the influence of different EV charging models and RES uncertain
calculation methods on SESS capacity configuration, the following four modes were set up.

Mode 1: The charging load of an EV was considered as a whole and it was charged
only at RI; meanwhile, the SO was used to calculate the output power of the RES.

Mode 2: The charging loads of an EV were based on the trip chain proposed in this
paper; meanwhile, the SO was used to calculate the output power of the RES.

Mode 3: The charging load of EV was considered as a whole and charged only at RI;
meanwhile, the ROOT-CCFV was used to calculate the power output of an RES.

Mode 4: The charging loads of an EV were based on the trip chain proposed in this
paper; meanwhile, the ROOT-CCFV was used to calculate the output power of the RES.

It was stipulated that the electric energy charged into an SESS is positive, indicating
that each region charges the electric energy into SESS, the release of electric energy is
negative, and indicating that each region is retrieving electric energy from SESS. The

capacity configuration result of the SESS and the charging expenditure of the EV under
different modes is shown in Table 4.

Table 4. Capacity configuration of SESS and charging expenditure of EV under different modes.

Mode Capacity Configuration Charging Expenditure
Mode 1 18,180.31 kWh 2191643 ¥
Mode 2 17,511.84 kWh 21,120.63 ¥
Mode 3 19,433.79 kWh 20,895.32 ¥
Mode 4 18,919.55 kWh 20,262.24 ¥

Comparing the results of mode 1 and mode 2, and mode 3 and mode 4, respectively, it
can be seen that under the same RES algorithm, the traditional EV charging model has a
greater demand for SESS capacity and charging expenditure than the EV charging model
based on the trip chain. This is because under the traditional EV charging, RI bears huge
load pressure. In order to reduce the operating cost of the entire RIES, it is necessary to
maintain sufficient SESS capacity to provide a power supply for RI, and a large number
of EV charging loads are concentrated in RI, resulting in higher charging expenditure.
Similarly, under the same RES algorithm, it can be seen that the charging expenditure of
the EV charging model based on the trip chain was 3.6% and 3.1% lower than that of the
traditional EV charging model, respectively. Therefore, the EV charging model proposed in
this paper has better energy economy.

Comparing the results of mode 1 and mode 3, and mode 2 and mode 4, respectively, it
can be seen that under the same EV charging model, the SESS capacity configuration under
ROOT-CCFV was higher than that under SO. This is because under the premise of ensuring
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robustness, ROOT-CCFV can obtain a value closer to the actual RES output power through
its strategy than SO. In order to reduce the operating expenditure, the RIES chooses to store
the surplus RES in the SESS and retrieve it from the SESS to the load during the peak load
period, so as to achieve the purpose of reducing the interaction cost with EPG during peak
period. Therefore, more SESS capacity configuration is required in the case of ROOT-CCFV.

Upon further study of the influence of different scales of the EV charging load on SESS
capacity configuration and the RIES operating cost, based on the EV trip chain charging
demand model in this paper, the total electric load of the four regions without the EV was
229,220 kW on a typical scheduling day. Assuming that the scale of the EV charging load
was equal to 15%/20%/25%/30%/35% of the total electric load, the results of the SESS
capacity configuration and RIES operating cost are shown in Table 5.

Table 5. The result of capacity configuration and operation cost under different EV load scales.

Mode 2 Mode 4
EV Load Scale - . . . . . . .

Capacity Configuration Operation Cost Capacity Configuration Operation Cost
15% of Total load 17,232.17 kWh CNY 110,462.33 18,746.26 kWh CNY 103,908.74
20% of Total load 16,634.31 kWh CNY 119,153.54 18,296.35 kWh CNY 110,280.87
25% of Total load 16,278.97 kWh CNY 127,855.19 17,767.79 kWh CNY 116,781.45
30% of Total load 15,728.46 kWh CNY 136,542.37 17,373.30 kWh CNY 122,976.14
35% of Total load 15,395.42 kWh CNY 145,246.72 16,899.01 kWh CNY 129,187.59

From Table 5, as the scale of the EV load continues to increase, the optimal configura-
tion capacity of the SESS continues to decrease, and the operating cost of the RIES continues
to increase. For the SESS, this is because when the EV load is large, each region needs to
provide more power to the EV, and there is no more surplus RES stored in SESS, resulting
in a reduction in the required capacity of SESS. For RIES, this is because each region needs
to produce more electric power to meet the demand for the EV load.

6.2.5. Analysis of Optimal Scheduling Results of the RIES Considering the EV
Charging Demand

Based on the four modes set out in Section 6.2.4, the influence of different EV charging
models and the RES uncertainty calculation methods on RIES operating costs were studied.
The details of RIES operation costs under different modes are shown in Table 6.

Table 6. The details of RIES operating costs under different modes.

Details of Operating Cost Mode 1 Mode 2 Mode 3 Mode 4
Electrical energy transaction expenditure CNY 37,380.93 CNY 31,740.59 CNY 35,694.37 CNY 30,477.46
Gas energy transaction expenditure CNY 60,872.21 CNY 57,072.09 CNY 55,624.14 CNY 51,773.44
Operation and maintenance expenditure CNY 24,931.91 CNY 20,431.22 CNY 23,788.59 CNY 19,118.81
Energy transaction expenditure with the SESS CNY 3143.58 CNY 3021.33 CNY 3332.67 CNY 3219.21
Total cost CNY 126,319.63 CNY 112,265.17 CNY 118,439.77 CNY 104,548.92

It can be seen from Table 6 that in the mode of the same use of ROOT-CCFV, the
operating cost of the RIES under the EV charging demand based on the trip chain was
11.7% lower than that under the traditional EV charging demand model. In the same
mode of using the EV charging demand based on the trip chain, the operating cost of the
RIES under ROOT-CCFV was 6.9% lower than that of the RIES under SO. In summary,
compared with the traditional EV charging demand modeling method, the EV charging
demand model based on the trip chain can help the RIES obtain a capacity configuration
result that is more in line with the actual energy demand, thereby reducing the operating
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cost of the RIES. Similarly, compared with SO, ROOT-CCFV can obtain more robust RES
output power, reduce the interaction cost between the RIES and EPG, and thus reduce the
operating cost of the RIES. Taking mode 4 as an example, the optimal scheduling results of
each region in the RIES were analyzed and are described as follows.

The RIES electrical load optimization scheduling results are shown in Figure 14. It
can be seen from Figure 14a that since the RA and CA only contain PV, the RA and CA
purchase the required electrical energy from the EPG when PV has less output power or no
output power. At the same time, when the EPG price is high, the RA and CA will also start
the GT for power generation. From Figure 14b, it can be seen that because the IA and OA
contain abundant RESs, excess power can be sold to EPG or stored in the SESS when the
RES meets its own load demand. The IA and OA start the GT power generation to make

up for the electric load gap only when the RES output power is not enough to meet their
own load in the morning and evening.
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Figure 14. Electric load optimization scheduling results of the RIES. (a) Electric optimal scheduling of
the RA and CA. (b) Electric optimal scheduling of the IA and OA.

The RIES electrical load optimization scheduling results are shown in Figure 15. From
Figure 15, we can see that the GB is the main equipment to provide heat power for each
region. It can be seen from Figure 15a that when the PV equipment starts to work during
the 10:00-17:00 period, the RA and CA choose PV to provide electricity for the EB to provide
the required heat energy in order to better reduce operating costs. From Figure 15b, it can
be seen that for the IA and OA, their RES was mainly sold to the EPG for revenue, so their
heat load was mainly provided by the GB.
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Figure 15. Heat load optimization scheduling results of the RIES. (a) Heat optimal scheduling of the
RA and CA. (b) Heat optimal scheduling of the IA and OA.

The RIES cold load optimization scheduling results are shown in Figure 15. From
Figure 16, we can see that the EC was the main equipment to provide heat power for each
region. It can be seen from Figure 16a and previous analysis that the GT needs to provide
power for the RA and CA when PV energy stops. At this time, the high-temperature waste
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heat generated by the GT was transmitted through the WHB, part of which was transmitted
to the HE and converted into heat energy to meet the heat load demand, and part of which
was transmitted to the AC and converted into cold energy to meet the cold load demand.
For the IA and OA, from Figure 16b we can see that because they contain very rich RES,
they mainly met their own demand for cooling load through the EC.
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Figure 16. Cold load optimization scheduling results of the RIES. (a) Cold optimal scheduling of the
RA and CA. (b) Cold optimal scheduling of the IA and OA.

6.2.6. Analysis of IDR

The IDR optimization results are shown in Figures 17-19. The RL according to the
EPG price, in the period of a high electricity price, cut part of the load. The TL transferred
the load in the high-energy-price period to the low-energy-price period, and reduced the
operating costs while causing the load curve to tend to be smooth. When the electricity
price per unit energy supply was higher than the price of cold/heat energy price, SL
converted part of the cold/heat energy into electric load. The IDR model established in this
paper makes the load curve smoother and realizes peak load shifting. In order to verify the
effect of the IDR in RIES optimal scheduling, the following mode were set.

Mode 5: based on mode 4 without considering the IDR.

Mode 6: based on mode 4 considering the IDR.

The details of RIES operating costs before and after considering the IDR are shown in
Table 7. From Table 7, it can be seen that when the RIES considers the IDR model proposed
in this paper, its optimal operating cost decreases from CNY 104,548.92 without considering
the IDR model to CNY 99,502.61; the optimal operating cost decreases by 4.8%. In summary,
the IDR model proposed in this paper can effectively reduce the operating cost of the RIES.
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Figure 17. Electric load IDR optimization results of the RIES. (a) Electric load IDR results of the RA
and CA. (b) Electric load IDR results of the IA and OA.
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Figure 18. Heat load IDR optimization results of the RIES. (a) Heat load IDR results of the RA and
CA. (b) Heat load IDR results of the IA and OA.
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Figure 19. Cold load IDR optimization results of the RIES. (a) Cold load IDR results of the RA and
CA. (b) Cold load IDR results of the IA and OA.

Table 7. The details of RIES operating costs before and after the IDR.

Details of Operating Cost Mode 5 Mode 6
Electrical energy transaction expenditure CNY 30,477.46 CNY 29,569.46
Gas energy transaction expenditure CNY 51,773.44 CNY 48,846.58
Operation and maintenance expenditure CNY 19,118.81 CNY 17,910.47
Energy transaction expenditure with SESS CNY 3219.21 CNY 3176.10
Total cost CNY 104,548.92 CNY 99,502,61

7. Conclusions

Aiming at the optimal scheduling problem of an RIES with EVs, this paper first
established a charging demand load mode of EV based on the trip chain theory; meanwhile,
it established a multi-energy IDR model. Aiming at the uncertainty problem of an RES,
firstly, the above problem was transformed into a class of dynamic robust optimization
problems with time-varying parameters, and then a ROOT-CCFV algorithm based on a
scenario method was proposed to solve this kind of problem. By establishing an RIES

model containing four regions and conducting case studies, the following conclusions can
be drawn:

1.  The ROOT-CCFV algorithm can better solve the dynamic optimization problem with
time-varying parameters and obtain a more robust solution. Compared with the

existing algorithms, in the mMPB test environment, the average survival time of
the robust solution obtained by the ROOT-CCFV algorithm was increased by 46.1%
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on average. The proposed ROOT-CCFV algorithm provides a solution for solving
dynamic optimization problems in the future.

2. The reasonable modeling of an EV charging demand model can effectively reduce
the capacity configuration cost of an SESS and the optimal operation cost of an RIES
in this region. And the larger the EV load in the region, the less the SESS capacity
required in the region. Under the same RES uncertainty solving algorithm, compared
with the traditional EV charging model, the EV charging model based on the trip
chain proposed in this paper can reduce the cost of its own charging expenditure by
3.5%, and at the same time reduce the operating cost of an RIES by 11.7%.

3. The alternative IDR model proposed in this paper can realize the coupling of electric
heating and cold energy, and effectively reduce the operation cost of an RIES. When
the IDR model proposed in this paper is considered in RIES optimal scheduling, the
operating cost can be reduced by 4.8%.

Author Contributions: Conceptualization, B.Z. and E.L.; methodology, B.Z. and E.L.; validation, E.L.;
investigation, B.Z.; data curation, B.Z. and E.L.; writing—original draft preparation, B.Z.; writing—
review and editing, B.Z. and E.L.; supervision, E.L.; funding acquisition, B.Z. and E.L. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was funded by National Nature Science Foundation of China, grant number
62063019. This research was funded by Natural Science Foundation of Gansu Province, grant number
22JR5RA241 and 2023CXZX-465.

Data Availability Statement: The data that support the findings of this study are available from the
corresponding author upon reasonable request.

Conflicts of Interest: The authors declare no conflicts of interest.

Appendix A

Table Al. Capacity parameters of equipment in each CCHP/(kWh).

Equipment RA CA IA OA
PV 2000 4000 8000 2000
WT / / 6000 3000
ES / 1000 2000 /
GT 2000 5000 8000 3000

WHB 5000 5000 8000 5000
GB 5000 5000 8000 5000
EH 5000 5000 8000 5000
EC 5000 5000 8000 5000
AC 5000 5000 8000 5000
HE 4000 4000 4000 4000

Table A2. Efficiency parameters of equipment in each CCHP.

Equipment RA CA IA OA
Efficiency of GT 0.35 0.35 0.35 0.35
Heat-to-electric ratio of GT 2.3 2.3 2.3 2.3
Efficiency of WHB 0.73 0.73 0.73 0.73
Efficiency of GB 0.85 0.85 0.85 0.85

Efficiency of EH 0.98 0.98 0.98 0.98
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Table A2. Cont.

Equipment RA CA IA OA
Efficiency of EC 4 4 4 4
Efficiency of AC 1.2 12 1.2 12
Efficiency of HE 0.9 0.9 0.9 0.9
Maximum charging of ES / 200 kW 400 kW /
Maximum discharging of ES / 200 kW 400 kW /
Charging efficiency of ES / 0.95 0.95 /
Discharging efficiency of ES / 0.95 0.95 /
Self-discharging efficiency of ES / 0.04 0.04 /
Initial energy storage of ES / 200 kWh 400 kWh /
Maximum energy storage of ES / 900 kWh 1800 kWh /
Minimum energy storage of ES / 200 kWh 400 kWh /
Table A3. Equipment parameters of an SESS.
Parameter Value Parameter Value
Charging efficiency 0.95 Initial state of SOC 0.50
Discharging efficiency 0.95 Maximum state of SOC 0.90
Self-discharging efficiency 0.04 Minimum state of SCO 0.20
Maximum charge/discharge 1000 kKW

power to each region

Table A4. TOU electricity price of EPG (CNY/kWh).

RA CA/IA/OA

Price Types Time Interval  Purchase Price  Sale Price  Price Types  Time Interval = Purchase Price  Sale Price
07:00-09:00 07:00-09:00

Peak time 18:00-24:00 0.759 0.415 Peak time 17-00-23:00 0.8650 0.415
00:00-02:00
. 04:00-07:00 . 23:00-00:00
Usual time 09:00-11:00 0.510 0.415 Usual time 00:00-07-00 0.5843 0.415
17:00-18:00
. 02:00-04:00 .
Valley time 11:00-17:00 0.261 0.415 Valley time 09:00-17:00 0.3036 0.415

Table A5. TOU electricity price of an SESS (CNY/kWh).

Price Types Time Interval Purchase Price Sale Price
Peak time 08:00-09:00, 19:00-24:00 0.725 0.435
. 00:00-02:00, 05:00-07:00
Usual time 10:00-11:00, 18:00-18:00 0475 0.435
Valley time 03:00-04:00, 12:00-17:00 0.271 0.435
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Abstract: As an emerging energy allocation method, shared energy storage devices play an important
role in modern power systems. At the same time, with the continuous improvement in renewable
energy penetration, modern power systems are facing more uncertainties from the source side.
Therefore, a robust optimization algorithm that considers both shared energy storage devices and
source-side uncertainty is needed. Responding to the above issues, this paper first establishes
an optimal model of a regional integrated energy system with shared energy storage. Secondly,
the uncertainty problem is transformed into a dynamic optimization problem with time-varying
parameters, and a modified robust optimization over time algorithm combined with scenario analysis
is proposed to solve such optimization problems. Finally, an optimal scheduling objective function
with the lowest operating cost of the system as the optimization objective is established. In the
experimental part, this paper first establishes a dynamic benchmark test function to verify the validity
of proposed method. Secondly, the multi-mode actual verification of the proposed algorithm is carried
out through a regional integrated energy system. The simulation results show that the modified
robust optimization over time (ROOT) algorithm could find solutions with better robustness in the
same dynamic environment based on the two-stage evaluation strategy. Compared with the existing
algorithms, the average fitness and survival time of the robust solution obtained by the modified
ROOT algorithm are increased by 94.41% and 179.78%. At the same time, the operating cost of the
system is reduced by 11.65% by using the combined optimization scheduling method proposed in
this paper.

Keywords: dynamic optimization problem; shared energy storage system; renewable uncertainty;
regional integrated energy system; dynamic robust optimization

1. Introduction

In-depth development of an RES is a considerable way to reduce carbon emissions
in power systems [1]. An RIES based on the CCHP is a crucial way to improve energy
efficiency and promote the consumption of the RES. Vigorously developing a CCHP-based
RIES is a momentous means for China to achieve “carbon peak and carbon neutrality” [2].
On the other hand, an RIES contains an RES, which makes the overall power genera-
tion output curve intermittent, random and volatile. An ESS is considered an important
method to suppress the internal uncertainty of the new power system due to its generation—
use electrolytic coupling effect [3]. Although energy storage has great potential, it still
faces problems such as a high investment cost and long return period, which limits the
development of ESSs [4].

Based on the above background, SESSs proposed by the combination of sharing
economy and ESS technology have become the focus of attention of experts and scholars [5].
References [6,7] introduce the basic principle, operation mechanism, pricing strategy and
evaluation method of SESSs in detail and put forward suggestions for the next research
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direction of SESSs. Zhao et al. [8] proved that the rational allocation of SESSs can effectively
reduce the storage—use bilateral operation cost by establishing a double level optimal
configuration model. Based on the problem of energy community configuration sharing
energy storage, Chang et al. [9] proposed a community configuration framework and set up
three energy storage device allocation methods. The test results show that the reasonable
arrangement of SESSs in the community can save configuration access and use costs.
Liu et al. [10] studied the role of SESSs in new energy consumption trends and low-carbon
operation. Huang et al. [11] applied SESSs to multi-microgrid grid-connected systems, and
an optimal scheduling strategy was proposed to improve the local consumption of RESs.
Reference [12] reduced the total energy cost and peak-valley difference rate of the entire
power grid through the virtualized SESS scheduling strategy. Currently, the academic
community generally believes that the participation of SESSs in the optimal scheduling
of RIESs is crucial for the stability and efficiency of system operation, which needs to be
further studied and discussed. However, due to the access of the RES, the RIES has great
uncertainty, which has a certain risk impact on the participation of the SESS in operation
of the RIES. Therefore, it is necessary to consider the uncertainty of RIESs when studying
SESSs, which is the focus of this paper.

From the perspective of control theory, the optimization problem considering RES
uncertainty can be regarded as a kind of dynamic optimization problem with time-varying
parameters. And ROOT can provide dynamic solutions according to specific time-varying
fitness functions [13]. Yu et al. [14] proposed the dynamic optimization algorithm concept
of ROOT for the first time. The main idea is to search for a set of dynamic robust solutions
which can be used by multiple continuous dynamic environments. Jin et al. [15] proposed
a framework of ROOT and introduced the implementation method of each module in the
framework. Fu et al. [16] proposed a method for characterizing and analyzing environmen-
tal changes in ROOT. Based on the concept of robustness, Fu et al. [17] proposed two new
robustness metrics. A new semi-ROOT was introduced by Yazdani et al. [18], which can
find a better solution when the current solution is acceptable. Novoa-Hernandez et al. [19]
proposed the idea of using an approximate model to analyze ROOT. Fox et al. [20] studied
different prediction methods of the ROOT algorithm. Zhang et al. [21] studied the predic-
tion model under the ROOT framework. Guzman-Gaspar et al. [22] made an empirical
comparison between the DE algorithm and random sampling method and analyzed the fea-
sibility and effectiveness of the differential evolution algorithm to solve the modified ROOT
problem in dynamic environments by using the survival time method. Yazdani et al. [23]
proposed a multi-population ROOT and introduce two metrics, one of which is to estimate
the robust estimation component of the promising region, and the other is the dual-mode
computing resource allocation component considering various factors such as robustness.
Chen et al. [24] proposed a new dynamic optimization method based on the environment-
driven method and ROOT and selected different algorithms to solve different problems.
The current research of ROOT is generally based on the AF or ST concept to find a solu-
tion with better robustness. Therefore, the accuracy of the predicted solution needs to be
improved, and how to improve the accuracy is the focus of this paper.

In order to supplement the shortcomings of the current research, this paper establishes
the model of multi-district RIESs considering SESS access and establishes an objective
function with the optimal RIES daily operating cost. Aiming to address the uncertainty of
RESs, a modified ROOT algorithm combined with scenario analysis is proposed from the
perspective of optimal control. The contribution and novelty of this study are as follows:

1.  Aiming to resolve the dynamic optimization problem, the ROOT-TSE-PCCG is pro-
posed. FD, SD and SFV are introduced as new evaluation metrics to improve the
prediction accuracy of ROOT, and the above three new evaluation metrics are used as
the first-stage evaluation index of the robust solution set. On this basis, the ST and AF
are introduced as the second-stage evaluation index. Finally, through the two-stage
evaluation method, the optimal robust solutions of the dynamic optimization problem
are obtained.
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2. To address the problem of uncertainty in RESs, this paper proposes an algorithm
that integrates the modified ROOT based on a two-stage evaluation with scenario
analysis methods. By using LHS to generate the scene of the RES output power curve,
then using BR to reduce the scene of the generated multiple scenes, and fitting the
final power curve conversion, the RES uncertainty problem is transformed into a
dynamic optimization problem with time-varying parameters. The modified ROOT
method based on two-stage evaluation and scene analysis is used to solve the above
optimization model, and the dynamic environment robust solution of RES output
power is obtained.

The rest of this paper is structured as follows: Section 2 introduces the structure of the
RIES with an SESS. In Section 3, the modified ROOT algorithm combined with scenario
analysis is proposed. Section 4 establishes the system optimization objective and discusses
the constraints. Section 5 analyzes the methodology of this paper through an arithmetic
example and Section 6 gives the conclusions obtained.

2. Structure Modeling of RIES Considering SESS
2.1. Structure of Multi-District RIES

The structure of the whole system is shown in Figure 1. This paper stipulates that
the bidirectional energy interaction objects of the CCHP in the region are the EPG and
SESS, and the purpose of energy interaction is to build an interconnected power network
in the region.

— — T \\
A 4 YVYV vYVV vV N\
T | Cuser ] [User2 |
[cenp 1] [ceuwpa || =
Regional 1 Regional 2 Regional i
| Node 1 | | Node 2 | -
i §
[ SharedBSS ]
v
[ NodeN | [NodeN-1]
= Electricity
[ccrpN] [ccwpna]| —» Gas
—  Water
[ Usern | [ Usern-1 ] —>  Hea
Regional N Regional N-1 — Cooling
==

Figure 1. The framework of the multi-district RIES.

The internal structure diagram of the CCHP contained in Figure 1 is shown in Figure 2.
It can be seen from Figure 2 that the CCHP can be divided into source side, converter
module and load side. The source side consists of a WT, PV cell, GT and GB. The converter
modules consist of a WHB, ES, EB, EC, AC and HE. The load side consist of electrical, cool-
ing and heating loads. Due to the limited space, and because the mathematical modeling
work of various types of equipment contained in the CCHP is very mature, the modeling
work of this paper is no longer discussed, and the mathematical model of each equipment
can be found in [25,26].
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Figure 2. The framework of the CCHP.

2.2. Modeling of SESS

The operator establishes an SESS among user groups for unified operation and man-
agement and provides energy storage services for multiple users in the same distribution
network area [6,27]. At the same time, operators make use of the differences in the electric-
ity consumption behavior of users at different moments and of different users at the same
time to allocate energy storage resources, thus further improving the utilization rate of
energy storage equipment and achieving the purpose of increasing the system’s operating
income [28,29]. In summary, the mathematical model of the SESS runtime should meet the
following conditions.

2.2.1. Constraint of State of Charge of SESS [30]

During the normal operation of the SESS, the electric energy contained in it should
not mutate.

SESS I SESS bs  pSESS,ab 1 SESSrel
Ep™>® = (1 - 7750E525>Et71 + (néFss Py 7" — e Py AL, 1
SESS

2.2.2. Capacity Constraints of SESS
The normal operation of the SESS should conform to the physical parameters of
its equipment.
max max (2)

ESESS init pSESS _ pSESS 4

min £SESS — pSESS — max pSESS
osessE < EPRP° < ogpgsE
start — YSESSEmax end

2.2.3. Charge and Discharge Power Constraints of SESS

When the SESS is in normal operation, it cannot have both charging behavior and
discharging behavior at the same time with any single user.

0< PtSESS,abs < PSESSuSESS

max abs
SESS,relea SESS77SESS
0 S Pt S Pmax Urglea , (3)
SESS SESS
uabs + urelea <1
SESS SESS
uﬂbs € {0’1}urelea € {0’1}

3. Uncertainty Analysis Method of RES
3.1. Problem Description

The robustness of the RIES optimal operation requires that the system can maintain
stable operation in the case of large fluctuations. At the same time, the robust RIES
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optimal scheduling results have practical engineering application significance. Therefore,
considering the actual engineering situation, when the external RES available energy is
the smallest, the stability of the system is the worst. Therefore, based on the theoretical
requirements of robustness requirements, this paper sets the optimization goal as the
minimum output of the RES. It is assumed that the output of the WT is PZYT and the output

of the PV cell is P};V. Obviously, both PXYT and PV are time-varying parameters [31].

Therefore, the expression of the optimization problem with Pi‘,’YT and PZ-I;V parameters is
as follows:

PG = minf (P +PY), 4
where f is the objective function. It is assumed that PX;’T and Pftv change only at the
specified time point of the specified scheduling conversion. In other words, within a fixed
time period [0, T], the minimization problem described in (4) can be expressed by the
changing behavior of definitions PXYT and Pftv as follows: the function sequence consisting

of a set of static functions consisting of multiple subintervals P/YT and PFV represents the
optimization problem (4), which is described as follows:

(P RR ) o f (BUT L), o (PRI ) ) ©

For the optimization problem defined by (5), ROOT is a novel algorithm used to
solve this problem due to its ability to provide dynamic solutions according to specific
time-varying fitness functions [15]. In order to better apply ROOT to obtain a more robust
solution, this paper first uses the scenario method to obtain the typical output curve of
renewable energy, fits the output curve and then substitutes the fitted result into the ROOT
algorithm for calculation. At the same time, the existing ROOT algorithm finds a new
robust solution according to its future predicted fitness value. However, the error of
predicting the future fitness value is often too large, which makes it difficult to find a better
robust solution. Aiming to solve the problems existing in the ROOT algorithm, this paper
proposes a modified ROOT algorithm.

3.2. Scenario Analysis Method

In order to make the time-varying parameters of the WT and PV cell contained in the
established dynamic optimization problem closer to the model reality, this paper chooses
the LHS and BR scenario method as the pre-method to modify the ROOT calculation
method, so as to ensure that the dynamic optimization algorithm can obtain a more robust
solution in the time domain. The scenario generation method is a way to analyze the
uncertainty of power systems by constructing deterministic scenarios, including scene
generation and scene restoration. Scene generation refers to the generation of a large
number of scenes with uncertain features based on the PDF of the research object, which is
represented by the set S = {51, S, ..., Sn}. Here, LHS is used to generate typical scenarios.
Through the analysis of the generated scene data set S, BR is used here to filter the scenes
with high similarity, and finally, the scene of set K = {Kj, Ky, ..., Ky} with the highest
expected value is obtained. Set x can replace the large-scale low-probability scene of the
original production with a small-scale high-probability scene. The process of scene analysis
is shown in Figure 3.

Scene generation Scene reduction Scenarios
Historical based on LHS based on BR Cluster and Curving Output
data method, obtain the method , obtain the corresponding fitting Data

initial scene set S classical scene set K probability p

Figure 3. Process of scenario analysis.
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3.3. Modified Robust Optimization over Time

The accuracy of the existing algorithm depends on the amount of statistical data, that
is, the statistical data required to cover the past and current fitness values of the search
space. However, in the problem of high dimension or large search space, as much data as
possible are needed to obtain a more accurate approximation, which is difficult to achieve
in practical engineering. Therefore, based on the spatial characteristics of the solution of
the dynamic robust optimization problem, this paper finds three important metrics that
affect the search robust optimal prediction: the sum of feasible direction, stability degree
and floating value. Based on the three new metrics, ROOT-TSE-PCCG is proposed.

3.3.1. Feasible Direction

The FD is used to describe the change trend of the objective function, which is as follows:

1 i=t+v
Rfd(x; t,u,v) = Yroril Z f(x, @it1) = f(x, @), (6)
i=t—u

where , and , are the number of historical and future environments, respectively; ; is the
current moment; R determines the FD of the objective function value (OFV) by calculating
the sum of the objective function change value under , historical environments, ; future
environments and current ; and then taking the average value.

In the process of evolutionary optimization of the algorithm, the change trajectory of
the corresponding solution can be obtained according to the change in the OFV of each
solution in the whole dynamic environment. Taking the single-objective maximization
problem as an example, 2 solutions are selected in 100 continuous dynamic environments
based on whether the FD is considered. The trajectory of the OFV obtained is shown in
Figure 4; both solutions are higher than the set threshold ;. From Figure 1, it can be seen
that in the A, B and C regions, the prediction error between the OFV and the actual value
of the two is the same, but the solution considering the FD can judge the change trend of
the optimal robust solution through the existing robust solution and the predictive robust
solution, and better track the change direction of the optimal solution, so the overall error
is small. Without considering the solution of the FD, the change trend of the optimal robust
solution cannot be judged in time; so, the tracking effect of the optimal robust solution is
general, and the overall error is large. Based on the above analysis, it can be seen that the
introduction of the FD into the prediction solution helps to obtain a robust solution with
better robustness.

—— Optimal robust solution
----- Candidate robust solution considering FD
f """ Candidate robust solution without considering FD
A

Figure 4. Robust solution of OFV change curve based on FD.
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3.3.2. Stability Degree
The SD is used to describe the stability of the predicted value, which is as follows:
RSD(x tu,0) = f(x,¢;)—[maxf (x,¢;) +minf (x,¢;)]

1 , (7)
stie [lLul,je[t+1,0],n €[l +00)

where ; is the fluctuation threshold.

The trajectory of the OFV obtained is shown in Figure 5; both solutions are higher
than the set threshold . As shown in Figure 5, it can be seen that the candidate robust
solution considering the SD can judge its change range and offset the degree by the size of
the value of the SD that is constantly updated. If the SD of the OFV is large, the prediction
accuracy is poor at this time, and the robust solution obtained may not be accurate enough.
If the SD of the OFV is small, the prediction accuracy is good at this time, and the accuracy
of the robust solution obtained is high. From the above analysis, it can be seen that the
value of the SD is also an important metric to guide the algorithm to find a solution with
better robustness.

—— Optimal robust solution
----- Candidate robust solution considering SD (Curve A)
""" Candidate robust solution without considering SD (Curve B)
— — Average of optimal robust solution
—'— Average of curve A
f“ Average of curve B

|

|

J | ————f - SDofcuveB !
2 : SDofcurve A :
- - - __ |

0 20 40 60 80 100 t

Figure 5. Robust solution of OFV change curve based on SD.

3.3.3. Sum of Floating Value

The SFV of the objective function in the adjacent environment can represent the change
state of the OFV corresponding to the solution, which is as follows:

i=t4v

RV (x,tu,0) = Y (F(x,9i1) — f(x,91)), (8)

i=t—u

The trajectory of the OFV obtained is shown in Figure 6; both solutions are higher than
the set threshold ;. As can be seen from Figure 6, the candidate robust solution considering
the SFV can continuously predict the change state of the optimal robust solution at the
next moment by updating the positive and negative values of the SFV, so as to better track
the function value at a future moment so that the error of the robust solution is kept in
a small interval. From the tracking curves of the A and B regions in Figure 3, it can be
seen that the optimal robust solution cannot be effectively tracked without considering
the candidate robust solution of the SFV when the optimization problem is in a state of
fluctuation in a dynamic environment, thus increasing the prediction error of the algorithm.
From the above analysis, it can be seen that the SFV is also an important metric in selecting
the optimal robust solution.
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—— Optimal robust solution
----- Candidate robust solution considering SFV
""" Candidate robust solution without considering SFV

~Y

0 20 40 60 80 100

Figure 6. Robust solution of OFV change curve based on SFV.

3.4. Analysis Method of Renewable Energy Uncertainty Problem

Based on the above analysis, this paper introduces three new metrics on the basis of the
existing ROOT algorithm and proposes the ROOT-TSE- PCCG algorithm. The algorithm
flow chart is shown in Figure 7. The algorithm design idea of this paper can be reflected
by the algorithm flow chart shown in Figure 7. Firstly, the typical output curve of the RES
is calculated by using the pre-scene analysis method. On the basis of the output curve
fitting results, P/YT and P!V are rewritten as time-varying parameters and brought into the
dynamic optimfzation prbblem shown in (4). Secondly, the proposed ROOT-TSE- PCCG
algorithm is used to solve the dynamic optimization problem. Finally, the robust solution
set is evaluated by using the two-stage evaluation method to obtain the optimal robust
solution to the dynamic optimization problem.

‘ Scenario analysis ‘
v
‘ Optimization ‘

‘ Initialization ‘

r ROOT-TSE-PCCG Current environment

flve)

Data set |

|
‘ || Historical environment | |
Predicting future fitness + | -
e ‘ | | Current environment | |
- n |
l : Predicted environment |

Evolutionary optimization ‘

Robust solution

Stage One |

Stability Degree Sum of Floating Value
R (x,t,u,0) R (x,t,u,0)

Robust solution
with better Metrics?

No >~

‘ Output robust result ‘

End

Figure 7. Flow chart of ROOT-TSE-PCCG.
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4. Optimal Scheduling Model
4.1. Optimization Objective
The objective function is shown below.
mlnCIES = Cg}’ld + Cgas + Com + ngss, (9)

where Cg iy and Cgs are the electrical energy transaction expenditure and gas energy
transaction expenditure of the EPG, respectively; Coy, is the operation and maintenance
expenditure of the RIES; Ci; is the energy transaction expenditure of the SESS.

N L ird ,Grid,bu ird HGrid,sell
Coria = 3 3 (b Bop™™™ — Sy PG A, (10)
n=1t=1
N T
Coas = Y 3 cgas | PG/ (1€ Hug ) + HEP/ (10 Hag ) | (11)
i=1t=1
SR Elec pEl H. H ld Id
Com = 3 Y-, (KEePE + KE Hfjot 4 KGCEr) at, (12)
i=1t=1
g SESS,ch SESS,di
Cooss = Y 3 (35351 — e pEFSs 4 ), (13)
i=1t=1

4.2. Optimization Constraints

For the multi-district RIES shown in Figure 1, the constraints can be categorized into
CCHP constraints, SESS constraints and coupling constraints between the CCHP and SESS,
as shown in Table 1.

Table 1. Optimization constraints of multi-district RIES.

Constraint Type CCHP SESS Coupling Relationship
Equality 1. Power bus energy balance constraints 1. Energy continuity constraint 1. CCHP—SESS energy
. 2. Electric storage energy coupling constraint
constraints . . .
relationship constraints
. . . 1. Charging/discharging

Inequality 1. Equipment operating power constraints power constraints /
constraints 2. Electric storage charging/discharging

power constraints 2. Capacity constraints

The constraints of the CCHP and SESS can be found in references [26,31] and Section 2.2,
respectively. At the same time, according to Table 1, the direct energy coupling constraints
of the CCHP and SESS should be considered. That is to say, from the perspective of the
coupling system and engineering practice, the cumulative value of the energy interaction
of all users using the SESS for charging and discharging behavior at a certain scheduling
moment should be equal to the energy input/output of the SESS itself at this moment, and
the energy source of each charging and discharging behavior of the SESS should be the
cumulative value of user charging/discharging behavior.

M=

I
—

( PftESS,dls . PftESS,cha) _ PtSESS,relea . PtSESS,abs, (14)

1

For the CCHP established in this paper, as shown in Figure 2, it is also necessary to
meet the waste heat balance constraints of the waste heat boiler, as shown below.

HEE /ine + CAS /e = HE vettonss (15)
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4.3. Optimization Method

After substituting the RES power data obtained based on the scenario analysis method,
the model is transformed into an MILP model. In this paper, the commercial solver
CPLEX12.8 and YALMIP toolbox are used to solve the model in Matlab R2021a [32].

5. Case Study
5.1. Simulation System

We take a more common comprehensive area as an example, as shown in Figure 8.
As shown in Figure 8, the RIES established in this paper consists of four sub-districts: RA,
CA, IA and OA [33,34]. Each sub-district has a self-built CCHP, and each sub-district is
connected to the energy transmission line between the EPG and SESS.

3l Ra cA &
»| CCHP1 CCHP2 |«
A A
4> 47
A 4 A 4
7 oa A [
»| CCHP4 CCHP3 |«

> Electricity » Gas flow > Water

power flow flow

Figure 8. Structure of multi-district RIES.

Tables A1 and A2 in Appendix A describe the parameters of the energy equipment
contained in each region. Table A3 in Appendix A describes the operating parameters of
the SESS equipment in this paper. Tables A4 and A5 in Appendix A describe the time-of-use
electricity prices of the EPG and SESS, respectively. The equipment efficiency parameters
of the ES installed in the CA and IA are the same as those of the SESS equipment. At the
same time, the price and calorific value of natural gas are 2.46 CNY/ m3 and 9.78 kWh/m?3,
respectively. For security considerations in real life, the RA and CA are not equipped with
a WT. Figure 9 shows the typical RES output curve and typical electrical, heat and cold
load curves in each region.

6000 - Residential area Industrial area

15,000 7
o0,
£ 4000 Dong o Elo,m)o-""‘e-e.5..'aL o onso
5 3
H '-O-O'Bvo-o-o-o-o-a-o-o-o-o.o_ o-o-o-8-°-e-a-° ] '-Q-goo.;,ooooo J
S2000 . & 2 5000 0 -00_g-0-0:0.
o bk 2 By - - 00-00.
04t T T R R ‘maaananst [l T T T T T T T 1
2 4 6 8 10 12 14 16 18 20 2 o2 2 4 6 8 10 12 14 16 18 20 2 24
6000 - Commercial area 15,000 Office area
0:0-0.,
£ 4000 8"3‘.‘9093’3 .. 210,000
B o °\ o H
H 7 e . g
3 2000 4 00 OO T e © 2 5000
e b-8-0-0-0-0-& °
0 &g 2 4 2 4 ¥ T T T T T T T 9 T T T T T T T
2 4 6 8 10 12 14 16 18 20 22 24 2 4 6 8 10 12 14 16 18 20 22 24
Time/h Time/h
PV ++O-- Electric load =—O— Heat load =@ Cold load WT PV @ Electric load =O= Heat load == Cold load
(a) (b)

Figure 9. The typical output curve of RESs and the typical load curve in each region. (a) The output
and load data of the RA and CA. (b) The output and load data of the IA and OA.

From Figure 9, the OA is a multi-power-type district; the RD and ID are a flat-power-
type district; the CA is a power-shortage-type district. And the scheduling time T of each
typical day is 24 h.
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5.2. Analysis of the Validity of Modified ROOT

To test the performance of ROOT-TSE-PCCG, all experiments in this paper are con-
ducted on mMPB [16], which can be described as follows:

- i=m i i 2 2
E{X|= max Hp = Wi x | X = Cill5 ¢ (16)
i=

= S —i
where F; (X) is the objective function; H}, W} and C, are the height, width and central

N
position of the i-th peak function, respectively; X is the decision variable; , is the total

number of peaks. In order to remain dynamic, ¢ is added to 1 after Ae in a certain period of
time, and Ae is measured by the number of fitness evaluations. The dynamic changes in Hj,

. —i
Wi and C; are as follows:

H;'H = Hf + height_severityi x N(0,1), (17)
ti+1 = Wti + width_severityi x N(0,1), (18)
—i =i i
Cip1=Ci+ 0441, (19)
— —i
i sX ((1—A)xr—+Ax0v
Ut-i,-] _ (( ) t)’ (20)

[1=A) X 7 +Ax 04|

where N (0, 1) is a random number of Gaussian distributions with a mean of zero and a
variance of one. The height and width of each peak are initialized according to its own set of
height_severity' and width_severity', and the above two parameters are randomly selected in
height_severity_range and width_severity_range. The parameter setting of mMPB is shown in
reference [18]. The comparison algorithms are proposed in reference [16] and reference [18].
The experiment is tested under the condition that mMPB changes randomly 150 times, and
each comparison algorithm runs independently 30 times to take the average value. The
experimental results are shown in Figure 10.

It can be seen from Figure 10a,b that as the fitness threshold set by the dynamic
optimization problem increases, the ST obtained by each dynamic optimization problem
decreases. The larger the fitness threshold set, the higher the robustness of the robust
solution obtained by the dynamic optimization problem in dealing with time-varying
parameters. It can be seen that when the fitness threshold is set to 40, the robust solution
obtained by the dynamic optimization algorithm has high robustness in the current external
environment. However, when the fitness threshold is set to 50, some solutions with low
robustness cannot adapt to the changing environment, resulting in a continuous decrease
in the ST of the robust solutions obtained by each ROOT algorithm.

Similarly, from Figure 10c,d, it can be seen that the average robustness of the robust
solution obtained by the dynamic optimization problem is also reduced with the increase
in the set threshold. The larger the threshold setting of the time window, the higher the
robustness of the robust solution obtained by the dynamic optimization problem when
dealing with time-varying parameters. When time window value is set to 2, the robust so-
lution obtained by dynamic optimization problem can adapt to the two minimum dynamic
environments. When the time window value is set to 6, the robust solution obtained by
requiring the previous time window to be 2 can satisfy more changing environments. At
this time, some robust solutions cannot adapt to the changing environment of the outside
world, resulting in a decrease in the average robustness of the robust solutions obtained by
each ROOT algorithm.
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average fitness (time window 2)

survival time (fitness threshold 40)

100 A

= Jin‘s method
2 Fu‘s method
"""" ROOT-TSE-CCFV

survival time (fitness threshold 50)

(a) Fitness thresholds =40
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average fitness (time window 6)
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time time
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Figure 10. The average robustness of different ROOT algorithms with different setting of fitness
thresholds and time windows.

In the case of mMPB, the robustness results of the average ST and the average AF of
different algorithms are shown in Table 2. The robustness of the proposed algorithm in
terms of the average ST and the average AF is significantly improved compared with the
comparison algorithm. From Table 2 and Figure 10, it can be seen that in general, with the
increase in the threshold set by the decision maker, the average robust performance of each
dynamic optimization algorithm shows a downward trend. At the same time, from the
experimental results in the mMPB environment, it can be seen that the average robustness
of the proposed algorithm has achieved good robustness results in any case.

Table 2. Comparison of average ST and AF of different ROOT algorithms under mMPB.

. Fitness Threshold Time Window
Algorithm
40 50 2 6
Jin’s ROOT 1.54 0.69 25.95 18.64
Fu’s ROOT 3.03 1.72 53.58 9.17
ROOT-TSE-PCCG 3.97 2.39 68.71 44.63

5.3. Analysis of SESS Capacity Configuration and RIES Operation Cost

In order to study the influence of different RES uncertainty calculation methods on
SESS capacity configuration and the role of the SESS in RIES optimal scheduling, SO is
introduced as a comparison algorithm for solving RES uncertainty, and the following four
modes are set up.

Mode 1: Calculation of RES output power using SO without considering the participa-
tion of the SESS in the optimized scheduling.

Mode 2: Calculation of RES output power using SO, and the SESS is considered to
participate in optimal scheduling.

Mode 3: Calculation of RES output power using ROOT-TSE-PCCG without consider-
ing the participation of the SESS in the optimized scheduling.
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Mode 4: Calculation of RES output power using ROOT-TSE-PCCG, and the SESS is
considered to participate in optimal scheduling.

In the subsequent analysis, it is stipulated that the power is positive when the electric
energy is charged into the SESS. At this time, it means that each sub-region charges its own
electric energy into the SESS, and the power is negative when the electric energy is released
by the SESS. At this time, it means that the electric energy in each region is recovering from
the energy storage system. The results of SESS capacity configuration and RIES operation
cost under different conditions are shown in Table 3.

Table 3. The details of SESS capacity configuration and RIES operating cost under different modes.

Details of Operating Cost Mode 1 Mode 2 Mode 3 Mode 4
Electrical energy transaction expenditure 18,410.47 CNY 15,122.97 CNY 17,410.43 CNY 14,225.04 CNY
Gas energy transaction expenditure 78,229.09 CNY 71,094.58 CNY 74,161.40 CNY 66,716.22 CNY
Operation and maintenance expenditure 6055.71 CNY 6117.08 CNY 5963.88 CNY 6120.32 CNY
Energy transaction expenditure with SESS / 3571.85 CNY / 3666.71 CNY
Capacity configuration of SESS / 15,352.76 kWh / 15,761.51 kWh
Total cost 102,695.27 CNY 95,906.49 CNY 97,535.71 CNY 90,728.29 CNY

By comparing mode 1 and mode 3, it can be seen that compared with SO, ROOT-TSE-
PCCG can obtain a more robust solution due to the introduction of three metrics R, RSP
and RSFV. Therefore, when solving the dynamic optimization problem considering RES
uncertainty, the total cost of the system can be reduced. Compared with mode 1, the total
operating cost of mode 3 decreased by 5.02%. By comparing mode 2 and mode 4, it can be
seen that the RES robust solutions obtained by different algorithms also have an impact on
the capacity configuration of the SESS. Since the solution obtained by ROOT-TSE-PCCG
is more robust, the required SESS capacity configuration is higher in this case, and the
capacity configuration of the SESS under mode 4 is 2.66% higher than that under mode 2.
In summary, ROOT-TSE-PCCG can better solve the RES uncertainty problem and obtain
a more robust solution so that the RIES can operate under more economical and stable
conditions. By comparing mode 3 and mode 4, it can be seen that when the RIES configures
the SESS, the total operating cost of the system is further reduced. Although the cost of
interaction between the RIES and SESS is increased, due to the complementary effect of
the SESS by coordinating the power load curve of each region, the energy that cannot be
absorbed by the rich areas of RESs can be reasonably stored and allocated to the areas
in need. Therefore, the electricity and gas purchase costs of the whole RIES are reduced,
of which the electricity purchase cost is reduced by 18.30% and the gas purchase cost is
reduced by 10.04%. In summary, the rational allocation of SESSs is also an important means
to enhance the stability of RIES operation and reduce operating costs.

5.4. Analysis of SESS-Optimized Operation Results

Taking the established mode 2 and mode 4 as an example, the optimal scheduling
operation results of the SESS are calculated, and the optimal energy interaction results
between each region and the SESS in each scheduling day are shown in Figure 11. In
Figure 11, when the value represented by a vertical column is positive (the vertical column
is above the left horizontal axis y = 0 kW), it means that the sub-region corresponding to
the vertical column is charging electricity power into the SESS. Otherwise, it means that the
sub-region corresponding to the vertical column retrieves electricity power from the SESS.
The red curve represents the change curve of the state of charge at each scheduling moment
of the SESS, and the value of the state of charge corresponds to the value of the right y axis.
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Figure 11. The optimized operation results of the SESS under different modes.

It can be seen from Figure 11 that the SOC curves of the SESS under mode 2 and
mode 4 are similar, because whether it is SO or ROOT-TSE-PCCG, the above algorithms
calculate the robust output based on the uncertainty of historical data of RESs and do
not produce large offset changes. At the same time, due to the different robust solutions
obtained by different algorithms, the interaction strategy between each region and the SESS
in the 15:00-20:00 time period is different. Combined with Figure 9, it can be seen that the
OA mainly charges power into the SESS because it contains abundant RESs, and its own
load is small. The RA, IA and CA are mainly powered from the SESS. It is worth noting
that due to the large power load demand of the CA in the evening peak period, the CA
purchases a large amount of power from the SESS during the 18:00-23:00 period. While
meeting its own power load, it reduces the interaction with the EPG to achieve the purpose
of reducing operating costs.

5.5. Analysis of Optimal Scheduling Results of RIES Considering SESS

We take mode 4 as an example to analyze the optimal scheduling result for each region
in the RIES.

The optimal scheduling results of power load in each region of the RIES are shown
in Figure 12. On the whole, RESs in all regions can participate in the actual power load
supply; so, the optimal scheduling strategy can complete the consumption of RESs well. At
the same time, the area with abundant RESs sells a large amount of electric energy to the
EPG to reduce the operation cost of the whole system. Similarly, abundant electric energy
can also be stored in the SESS to ensure the rational utilization of renewable energy in the
RIES. Specifically, it can be seen from Figure 12a that the RA and CA only contain a PV cell,
which belongs to the RES-deficient area. Therefore, when the RA has no PV output during
03:00-04:00 and 18:00-24:00, it is necessary to purchase electricity from the EPG to meet its
own demand for power load. When the output power of the PV cell is large at 09:00-11:00,
most of the users of the RA have moved to other areas to consolidate their lives. At this
time, their own power load is small, so they can be charged to the SESS to improve their
own electricity sales revenue and complete the consumption of RESs. For the CA, since the
power load and heat load are at the peak stage during the period of 10:00-17:00, and during
this period, the CA’s own photovoltaic power generation cannot meet the load’s demand
for electricity, the CA mainly purchases electricity from the EPG during this period. In the
rest of the time period, due to the comprehensive consideration of the coupling supply of
cold and heat energy, some of the electricity is supplied through a GT. From Figure 12b, it
can be seen that the IA has abundant RESs and its own power load is low; so, the IA can
sell rich power resources to the EPG to earn profits. Similarly, while the OA region is rich
in RESs, its own power load is lower than that of the IA, so it can sell a large amount of
power to the EPG.
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Figure 12. Electric load optimization scheduling results of RIES.

The optimal scheduling results of the RIES heat load are shown in Figure 13. On the
whole, the thermal energy generated by the GB is the main source used to meet the thermal
load in the region, accounting for 86.58% of the total cooling load supply, and the remaining
thermal energy supply is completed by the HE and EB. The following is a detailed analysis
of the thermal energy supply model for each region from Figure 14. Figure 13a shows the
electric energy purchased from the EPG in the RA and CA areas. The RA and CA areas
are mainly used to supply power to the EB, and the EB converts electric energy into heat
energy to heat the area. In particular, because the electric load and heat load in the CA area
are at their peak during 10:00-17:00 and the external electricity price is at the valley stage,
the CA is mainly provided for by the EB during this period. It can be seen from Figure 13b
that the IA and OA use the GB as the only device that provides more than 80% of thermal
energy in a day. In particular, the IA only uses the EB and HE to provide a small amount of
heat energy during the morning and evening due to electricity prices. The reason for the
above results is that gasoline prices remain unchanged for a day. At the same time, in the
process of the GB directly providing heat to the load, the energy from the conversion steps
involved is less and the energy loss is lower.

Figure 14 shows the optimal scheduling results of the multi-region RIES cooling load.
On the whole, the cold energy generated by the EC is the main source used to meet the
cooling load in the region, accounting for 84.38% of the total cooling load supply, and the
remaining cold energy supply is completed by the AC. The following is a detailed analysis
of the cold energy supply mode in each region from Figure 14. From diagram (a), it can
be seen that since there is no PV power supply in the RA area during 19:00-24:00, the
EPG is in the peak stage of electricity prices, so the RA will use the GT to produce the
required electricity, and the GT will produce high-temperature waste heat when running.
In order to give full play to the advantages of the CCHP, improve energy utilization and
reduce operating costs while ensuring the cascading utilization of energy, at this time, high-
temperature waste heat passes through the heat pipe. Part of the heat energy is transmitted
to the HE to continue to generate heat energy with a controllable success rate, and the other
part of the heat energy is transmitted to the AC to convert high-temperature waste heat
into cold power to the user. Thus, this is more economical to meet the user’s demand for
cold power. Similarly, the optimal operation result of the CA is similar to that of the RA,
that is, when there is no RES available, the AC is used to absorb high-temperature waste
heat to provide the cooling load. It can be seen from Figure 14b combined with Figure 9b
above that both the IA and OA are RES-rich areas. On the one hand, in order to consume
their own RESs and reduce the rate of wind and light abandonment, and on the other hand,
in order to reduce the expenditure of purchasing natural gas from the EPG and reduce the
operating cost, the cooling load generated by the EC is mainly used to meet the needs of
their users for the cooling load.
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6. Conclusions

In this paper, the following work is carried out for the multi-area RIES optimal schedul-

ing problem with an SESS, considering RES uncertainty. Firstly, a multi-area RIES system
model considering SESS access is established. At the same time, the working state of SESS
access of the RIES is considered from three aspects and the corresponding constraints are
proposed. Secondly, PV cells and a WT are regarded as time-varying parameters, and a
dynamic optimization problem model considering time-varying parameters is established.
For such problems, this paper also proposes a ROOT-TES-PCPG algorithm combined with
a scene analysis method to solve them. Finally, the proposed method is verified by estab-
lishing a practical example model. Based on the proposed different models, the following
conclusions can be obtained through the results.

1.

For the dynamic robust optimization problem considering time-varying parameters,
the improved ROOT algorithm based on the two-stage evaluation proposed in this
paper has a better judgment effect on the predicted solution in the future, so that the
robustness of the solution obtained by the overall algorithm is better. In the mMPB test
environment, compared with the results of the existing ROOT algorithm, the solution
AF index and ST index obtained by ROOT-TSE-PCPG are increased by 94.41% and
179.78, respectively. Therefore, the algorithm proposed in this paper provides a new
method for calculating the optimal robust solution of dynamic optimization problems
in practical engineering and has certain practical application value.

When there are uncertainties such as a WT and PV cells in the RIES system, the ROOT-
TSE-PCPG based on the scenario analysis method proposed in this paper can be used
to analyze the uncertainty of RESs through the robust control method. At the same
time, the method proposed in this paper can effectively reduce the operating cost of
the RIES. The application of the proposed method in the optimal scheduling problem
can reduce the operating cost of the whole system by 5.32% on average. Similarly,



Appl. Sci. 2024, 14, 4997

17 of 20

Acronym
AC

AF

BR

CA
CCHP
DE

ESS

EPG

EB

EC
ES
FD
GT
GB
HE
IA
LHS
MILP

when there are multiple sub-energy regions in the system, the rational allocation
of SESSs can make the energy consumption of the whole system more stable and
the energy interaction more scientific, so as to achieve the purpose of reducing the
operating cost of the system. The rational allocation of SESSs can reduce the operating
cost of the whole system by an average of 6.81%, while considering the above two
factors in the optimal scheduling problem can reduce the operating cost of the system
by 11.65%. At the same time, the SESS also acts as an energy transmission line, which
can transmit electricity from RES-rich areas to RES-deficient areas.

At present, although several SESS demonstration parks have been put into operation
in China, they are still in the development stage. As China continues to move toward the
goal of ‘carbon peak carbon neutrality’, the method proposed in this paper will provide a
reference for the operation of SESSs in the future. At the same time, with the increasing
uncertainty factors on the source-load side of the RIES, the operation cost and economy
requirements of RIES optimal scheduling will be higher in the future, and the operation
optimization objectives will be more diversified. Therefore, how to model and solve the
dynamic robust optimization problem with multiple optimization objectives and uncertain
time-varying parameters is an issue that needs to be studied in the future.
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Nomenclature
Absorption chiller mMPB Modified moving peaks benchmark
Average fitness OA Office area
Backward reduction OFV Objective function value
Commercial area PDF Probability density function
Combined cooling heating and power PV Photovoltaic
Differential evolution RES Renewable energy source
Energy storage system RIES Regional integrated energy system
External power grid ROOT Robust optimization over time

Electric boiler

ROOT-TSE-PCCG

ROOT based on two-stage evaluation
of problem characteristic
change guidance

Electrical chiller RA Residential area

Energy storage SOC State of charge

Feasible direction SD Stability degree

Gas turbine SFV Sum of floating value

Gas boiler ST Survival time

Heat exchanger SO Stochastic optimization
Industrial area SESS Shared energy storage station
Latin hypercube sampling WT Wind turbine

Mixed integer linear programming WHB Waste heat boiler
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Table Al. Capacity parameters (kWh).

Self-discharge/charge/discharge
efficiency of SESS
Minimum/maximum/initial
coefficient of SOC

Electricity purchase/sale price
with EPG

Electricity purchase/sale price
with SESS

Price of natural gas

Efficiency of GT/GB/HE/AC/WHB
Heating value of natural gas
Operating and maintenance
expenditure of electric/heat/cold
energy equipment
Thermoelectric ratio of GT

Equipment RA CA IA OA
PV 2500 4500 8500 2500
WT / / 6500 3500
GT 2500 5500 8500 3500
GB 5500 5500 8500 5500

WHB 5500 5500 8500 5500
ES / 1500 2500 /
EH 5500 5500 8500 5500
EC 5500 5500 8500 5500
HE 4500 4500 8500 4500
AC 5500 5500 8500 5500
Table A2. Efficiency parameters.
Equipment RA CA IA OA
Efficiency of GT 0.35 0.35 0.35 0.35
Heat-to-electricity ratio of GT 2.3 2.3 2.3 2.3
Efficiency of WHB 0.74 0.74 0.74 0.74
Efficiency of GB 0.86 0.86 0.86 0.86
Efficiency of EH 0.98 0.98 0.98 0.98
Efficiency of EC 4 4 4 4
Efficiency of AC 1.2 1.2 1.2 1.2
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Table A2. Cont.

Equipment RA CA IA OA

Efficiency of HE 0.9 0.9 0.9 0.9
Maximum charge power of ES / 250 kW 500 kW /
Maximum discharge power of ES / 250 kW 500 kW /
Capacity of ES / 1000 kWh 2000 kWh /

Table A3. Equipment parameters of SESS.

Parameter Value Parameter Value
Charging efficiency 0.95 Initial state of SOC 0.50
Discharging efficiency 0.95 Maximum state of SOC 0.90
Self-discharging efficiency 0.04 Minimum state of SOC 0.20

Maximum discharge power 1000 kW Maximum charge power 1000 kW

Table A4. Time-of-use electricity price of EPG (CNY/kWh).

Price Types Time Interval Purchase Price Sale Price
. 06:00-08:00
Peak time 17:00-23:00 0.763 0.420
. 04:00-06:00
Usual time 10:00-16:00 0.521 0.420
Valley time 23:00-00:00 0:00-03:00 0.253 0.420

Table A5. Time-of-use electricity price of SESS (CNY/kWh).

Price Types Time Interval Purchase Price Sale Price

. 08:00-09:00
Peak time 19:00-24:00 0.725 0.435

00:00-02:00
. 05:00-07:00
Usual time 10:00-11:00 0.475 0.435
18:00-18:00
03:00-04:00

Valley time 12:00-17-00 0.271 0.435
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ABSTRACT Under the background of low-carbon and efficient development of energy system, renewable
energy will be vigorously developed and gradually become the main force of energy system. However,
renewable energy has great uncertainty and randomness due to its own formation characteristics. In order
to solve this problem and reduce the carbon emission of regional integrated energy system (RIES), this
paper first introduces the optimal structure of RIES considering shared energy storage system (SESS)
and power-to-gas (P2G). Secondly, a ladder type reward-punishment carbon trading mechanism model
is proposed, which considers the reward and punishment interval of carbon emissions. At the meantime,
an improved robust optimization over time (ROOT) method based on index contribution degree is proposed
for dynamic problem considering uncertainty, based on the effect of each solution operator in the robust
solution calculation process. Finally, a scheduling model with the lowest daily operation cost is established,
and the effectiveness of the proposed low-carbon operation method is verified by comparison. Experimental
results show that under the same dynamic test environment, the calculation accuracy of the improved ROOT
method based on the contribution degree is increased by 3.56% on average, the calculation time is shortened
by 2.93% on average. Meanwhile, the carbon emission can be reduced by 8.13% by adopting the carbon
emission reduction measures, which ensures the system under low-carbon conditions.

INDEX TERMS Dynamic robust optimization, integrated energy system, electrical energy storage, renew-
able energy source, uncertainty.

NOMENCLATURE RO Robust optimization.
RIES  Regional integrated energy system. ROOT  Robust optimization over time.
RES  Renewable energy source. EPG External power grid.
CCHP Combined cooling heating and power. EL Electrolyze.
CTM  Carbon reduction mechanism. MR Methane reactor.
P2G Power-to-gas. HFC Hydrogen fuel cell.
SESS  Shared energy storage system. mMPB  Modified moving peak benchmark.
NG Natural gas. AHP Analytic hierarchy process.
SO Stochastic optimization. CRITIC  Criteria importance through intercriteria
correlation.
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1A Industrial area.

OA Office area.

t Index of time periods.

i Number of each CCHP.

NA Efficiency of equipment A.

ESESS Capacity of SESS.

PfESS’abS / PfESS’ relea Charge/Discharge ~ power  of

abs /nloss /nrelea

SESS.
Charge/Self-discharge/

Nsess/NsEss/ ISESs
Discharge efficiency of SESS.

ESESS JESESS /ESESS  Maximum/Initial/Final =~ capacity

‘ of SESS.

ofpes /OGO dRes Lower/Upper/Initial coefficient of
SESS capacity.

PESS Maximum power of SESS.

Utsglff / Utsfesli g Charging/Discharge state bits of
SESS.

PEL Input electric energy of EL.

Gl%’t Output hydrogen energy of EL.

AP%X / AP%n Upper/Lower limit of EL ramp
power.

PEL /PEL Upper/Lower limit of input elec-
tric energy of EL.

Ggﬁ i Gﬁg’t Input hydrogen energy/Output
natural gas energy of MR.

G%fmax / GAH’Iﬁmin Upper/Lower limits of input
hydrogen energy of MR.

AGMR /AGMR

Hj>,max H,,min

Upper/Lower limit of MR ramp
power.

Ggf ? Input hydrogen energy of HFC.

PfIF ¢ /HZHF ¢ Output electric/heat energy of
HFC.

GZZF fnax Zf fnin Upper/Lower limits of input
hydrogen energy.

AP yrc/ APE;I}HFC Upper/Lower limit of HFC ramp
power.

PX /Pfft Output electric power of equip-
ment X.

H/H}, Output heat power of equipment
Y.

ct/ct, Output cold power of equipment
Z.

PX/PX Upper/Lower ~ output electric
power of equipment X.

Hé’m /H£irl Upper/Lower output heat power
of equipment Y.

Cflax / Cflin Upper/Lower output cold power

of equipment Z.

I. INTRODUCTION

With the increasing demand of the society to use more clean
and low-carbon electric energy and reduce the carbon emis-
sion of the whole society, RES has made great progress due to
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its low pollution characteristics [1], [2]. RIES, which consists
of RES and CCHP, has become the basis of a new intelligent
power system due to its efficient use of energy [3].

The research of RIES has changed from optimal economic
benefits to the lowest carbon emissions. References [4],
[5]. From the external market factors of RIES, CTM is the
key factor to realize the carbon reduction of RIES [6], [7].
Reference [8] introduces traditional carbon trading model,
based on electrical-gas coupling unit and carbon capture
device, a low carbon scheduling model considering demand
response is proposed. Reference [9] introduced economic
scheduling model based on ladder type CTM. On this basis,
reference [10] improved ladder type CTM and established
reward-penalty CTM to strengthen the means to control
carbon emissions from the power system. Increasing RES
consumption rate is also an important measure to achieve
carbon reduction. From the perspective of RIES’s own fac-
tors, studies have proposed rational allocation of P2G [11],
[12] converts surplus electric energy into natural gas, which
enhances the stability of RES as a power source and maintains
the carbon emission of the system at a low level due to
the absorption of pollution sources such as carbon. In ref-
erence [13], P2G is introduced into RIES, and an economic
scheduling model of multi-energy suppliers based on Nash
game model is established. Reference [14] evaluated the
economics of P2G and feasibility of producing natural gas to
participate in energy market. Based on traditional P2G model,
a bi-level economic dispatch model considering RES and
CCHP is proposed in reference [15]. Many literatures only
consider carbon emissions and do not consider the impact of
RES uncertainty when dealing with RIES optimal scheduling
problems. However, in the actual engineering environment,
when the decision maker considers the RES power generation
system, it is not only to consider the role of P2G and CTM,
but also to consider the impact of other operating models on
the low-carbon operation of the entire system. Based on this,
reference [16] improved the sustainable development of the
system by introducing the load probability emission model
into RES. Considering the increasing popularity of electric
vehicles, reference [17] introduced electric vehicles into the
energy system as a charge and discharge load model and
proposed an evolutionary algorithm and optimization strategy
to optimize the scheme model, reducing the system operating
cost and overall environmental pollution.

Among most uncertainty factors in modern power sys-
tem, RES is the main cause of uncertainty on the power
side due to the fluctuation of the natural environment [18].
At present, the main methods to solve the uncertainty mode
are chance constraint method, scene generation method and
robust optimization method. Based on the coupling rela-
tionship between chance constraints and constraint events,
reference [19] refines and splits joint chance constraints
to transform many and complex constraints into a single
constraint that is intuitive and easy to solve and calculate.
Based on support vector machine, reference [20] identi-
fies zero-probability events in the event and optimizes the
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distribution curve of cross probability through this method.
Reference [21] considers that it is crucial to obtain reasonable
wind power scenarios for optimal operation, so the gradient
penalty method is introduced into Wasserstein Gan and a
certain number of wind power output scenarios are obtained
through calculation examples. Reference [22] proposes an
improved generative adversarial network to solve RES mod-
eling problem. Reference [23], [24] proposed a two-stage
optimization model based on data-driven method and robust
optimization method, aiming at the uncertainties of power
system at source side and network side during operation.

At present, most of the research on carbon reduction mea-
sures only focuses on optimization measures and ignored the
uncertainty in the actual optimal scheduling. Although most
studies based on scenario analysis for RES uncertainty can
obtain the output scenarios of RES, the robustness of the
results in the actual engineering environment is questionable.
Therefore, it has the important practical significance to fur-
ther study the impacts of the carbon reduction mechanisms
and uncertainty coordinated operations on RIES optimal
scheduling and SESS capacity configuration. Aiming at these
problems, we establish a RIES composed of multiple CCHPs.
Through the establishment of SESS and multi-energy inte-
grated P2G at the device level, combined with CTM at
the external mechanism level, we propose carbon emission
reduction measures that have mature cases and are in line
with the actual environment. At the same time, based on
the proposed algorithm, an improved ROOT algorithm based
on index contribution (IROOT-IC) is proposed to solve the
optimal scheduling problem of the established RIES model.
The contributions are as follows:

(1) A multi-energy integrated P2G model is established
by introducing HFC model, and a carbon emission reduction
measure is formed by combining CTM.

(2) A ROQOT considering the index contribution degree
is proposed to improve the applicability of the robust opti-
mization algorithm for the optimal scheduling problem
considering uncertainty.

The rest of this paper is structured as follows. Section II
introduces the basic structure of RIES and mathematical
model of P2G model. Section III establishes a ladder type
reward and punishment CTM. In section IV, the dynamic
robust solution algorithm of RES uncertainty is introduced.
Section V presents case studies, and Section VI gives the
conclusions.

Il. STRUCTURE MODELLING OF RIES INCLUDING
MULTI-CCHPs BASED ON SESS AND P2G

A. OVERALL FRAMEWORK OF RIES

RIES structure with multiple CCHPs is shown in Fig 1.
As shown in the Fig 1, the RIES consists of several inde-
pendent sub-regions within the region, each of which is
composed of a CCHP system and corresponding user load.
Each sub-region is interlinked with the SESS through the
transformer installed at the node, while each sub-area is
interlinked with the EPG through the energy network. The
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FIGURE 1. Structure of RIES.

purpose of setting SESS is to promote the consumption of
RES in each sub-region and optimize the electric power,
so there is no energy coupling relationship between SESS
and EPG. Similarly, considering the island situation existing
in the actual project, there is no energy coupling relationship
between CCHPs.

Load

Electrical
Chillers

“Absorption
Chiller

Heat
Exchanger

FIGURE 2. Structure of CCHP.

There are a variety of energy flows inside CCHP, and
various forms of energy flows are coupled through cou-
pling equipment. Generally speaking, according to the
different functions of different energy flows in each part,
CCHP can be divided into energy supply, energy conver-
sion and energy demand. At present, common method to
describe the energy conversion and coupling of different
equipment is the energy bus model. According to the bus
model, multi-energy flow generated by the coupling device
inside the CCHP is shown in Fig 2. The energy supply
consists of common energy generation equipment, includ-
ing renewable energy generation equipment composed of
photovoltaic (PV) and wind turbine (WT) and gas energy
consumption equipment composed of gas turbine (GT) and
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gas boiler (GB). The energy conversion includes the equip-
ment that can complete the conversion of electric, heat
and cold energy. The energy coupling devices included in
this model composed of energy storage (ES), electrothermal
coupling equipment electric boiler (EB), electric cooling cou-
pling equipment electric chillers (EC); layered heat control
equipment waste heat boiler (WHB); heat and cold coupling
equipment absorption chiller (AC) and heat transfer equip-
ment heat exchanger (HE). The mathematical model of each
equipment and the constraints that should be obeyed during
operation are described below. The operating mathematical
model of WT and PV can be found in reference [25]. The rest
of the equipment constraints are as follows [26], [27]:

1) GT
GT GT
P = ngT Vggs Hyg
1 —n (H
GT GT _h GT
H™ = ——"ngrP;
GT

where ng, is the generating efficiency; ”}(l;r is the heating
efficiency; VgGa{ is the NG consumption of GT, H,, is the

calorific value of NG. When the GT is running, following
constraints should be met:

GT GT GT
e N @
PdownSPt _Pt—l SPup
2) GB
HzGB = nGngang 3)

where VgGuf is the NG consumption of GB. Meanwhile,

GB must meet the following constraints:

HGB < HtGB < HGB 4)

min max

3) WHB

Due to the combustion of NG during GT operation, heat
energy is also generated while generating electric energy.
This part of heat energy is further absorbed and utilized by
WHB.

HVB = pywppHCT 5)
4) EB
EB is part of the electrothermal conversion process in RIES,

through which the system provides hot water to the user or
for heating.

HEP = ngp (1= nfgy’) PP ©)
The following constraints should be met during operation:
Hynfy < H < Higy ™
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5) EC

EC compresses the piston of the compressor through the
operation of the motor, so as to achieve the purpose of heat
transfer.

CEC = COPEcPEC ®)

where COPEc is the energy efficiency ratio of EC. The EC
should meet the following constraints during operation:

Crnin < C7'° < Crng ©)
6) AC
AC use heat energy as input energy, through the process of
heat absorption and condensation heat release, to achieve the
production of cold energy.

CAC = COPscHAC (10)

where COP4c is the energy efficiency ratio of AC. The AC

should meet the following constraints during operation:
Conin < €1 < Cina (11)

7) HE

HE is a heat energy conversion equipment of the RIES and

the heat energy bus.

HIE = nygi (H)™E — H/C) (12)

The HE should meet the following constraints during
operation:

HHEE < gHE < gHE (13)

min max

In general, the mathematical model of ES and the con-
straints to be met during operation are similar to SESS. The
SESS model and P2G model will be described in detail in the
following.

B. MODELLING OF SESS

SESS refers to the behavior and corresponding mode of
energy storage equipment owners renting equipment capac-
ity/power to other energy participants [28], [29]. The sharing
strategy of SESS equipment can improve the overall utiliza-
tion rate of equipment, increase the absorption level of RES,
and reduce the overall carbon emission of RIES [30], [31].
SESS should satisfy the following considerations.

1) POWER CONTINUITY CONSTRAINT

SESS __ loss SESS
Ep™ = (1 - ”SESS) E’

1
s pSESS,ab. SESS, rel, A A
(ngEbe‘SPt o relea Pt " ea) t (1 )
NsESs

2) CAPACITY CONSTRAINTS

min SESS SESS max r-SESS

OsgssEmax. = E;° = 05pssEmax (15)
ESESS _ ainit ESESS _ ESESS
start — YSESS™max — “end
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3) CHARGE AND DISCHARGE CONSTRAINTS

SESS,abs SESS 7 7SESS
0= Pt Pmax U ,abs
SESS,relea SESS 7 7SESS
0< Pt Pmax Ut relea (16)
USESS + USESS <1
t,abs t,relea —
SESS SESS
Ut abs {O 1} t,relea € {O’ 1}
Y - - - _—_—_—_—_-—_—_—_——_mn
| 0, |
Electrical T €O,
—>

|

|

|

Methane :
Reactor |
|

|

4

| E—— _‘ ____________ —_—— e
E Electricity
Heat

Hydrogen
Fuel Cell

FIGURE 3. Structure of multi-energy integrated P2G.

C. MODELLING OF P2G

This paper proposes a multi-energy integrated P2G operation
process based on the traditional P2G model by introducing
HFC. The structure of P2G is shown in Fig.3. Each compo-
nent should satisfy the following considerations.

1) EL
Gﬁgt = nELPEL
Pk < PP <PLL (17)
EL EL EL
APmm Pt+1 P = APmax
2) MR

GAN/Ig t = UMRGAH/I;e t
MR
GHZ min — GHz t GH2 max (18)

GH2 min = GNG 141 GNGt = AGHZ max

3) HFC

HFC HFC
P HFCGHZ t

HFC HFC
H HFCGHZ t (19)
GHFC GHFC GHFC

H,, mm — YH),t — “YHp,max

HFC max

AGH2 HFC = GH2 i+1 — Gm,r = AGy, yre

1IlIl. LADDER TYPE REWARD-PENALTY CARBON TRADING
MODEL

The operation of CTM is based on the individual’s carbon
emission as a commodity that can be bought and sold. The
model of ladder type reward-penalty carbon trading model
are as follows.

115646

A. FREE CARBON EMISSION QUOTA MODEL
Each RIES is allocated a fixed amount of free carbon emis-

sion quota on each dispatch day based on its own established
GT and GB.

EC02 _ Gnd b +EGT -|—EGB

‘free — jree ree ree

Grid,b coal Grid,b
E ‘free =34 ree Z Z P
t= 1 i= 1

Ejree = 8jee ((,0 > z POT 4 Z 3 HgT) (20)

t=1 i=1 t=1 i=1
N

GB __ ¢8as GB
E ree =34 ree Z zHi,t

t=1 i=1

where Effeoez is total free carbon emissions quota of
RIES; E(r;ere’d b EjffLTL and Ef(r;fi are free carbon emis-
sions quotas of EPG, GT and GB, respectively; Scroeael
and 85 are carbon emission quota per unit of electric-

ree
ity issued by coal-fired units and heat issued by natural

gas-fired units, respectively; ¢ is electric heat conversion
coefficient.

B. ACTUAL CARBON EMISSION MODEL
Assuming that EPG purchases are derived from coal-fired
unit.

CO, _ -Grid,b
Eactual actual + Eactual + Eactual Eactual

Grld b

actual Z z (al + blPG”d ’ + C (PG”d b) )

tlll

actual z Z ((lz + bzP?tT =+ CZ(PEIT)Z)

tlzl

actual Z Z (612 + b2P(,;tB + CZ(P?IB)Z)

tlzl

uctual -
(21)
where EaC;(t)uzal is total actual carbon emissions of RIES;
Grid,b GT GB P
E el > Equa @04 E_0 o are actual carbon emissions of

EPG, GT and GB, respectively; E acm . 18 actual carbon
absorbed of MR; ay, by, c1 and ay, by, ¢y are carbon emission
calculation parameters; & is parameters of carbon absorption
in the process of MR.

C. LADDER TYPE REWARD-PENALTY CARBON TRADING
MODEL

Through (20) and (21), the accurate carbon emissions of RIES
are calculated, and the reasonable range of carbon emission
rewards and punishments is divided. Based on this, a ladder-
type reward and punishment CTM are established to further
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reduce carbon emissions.

Cearbon

[ —0Q2+3y)d + 0 (1 + 3Y)(Esary — Ego? +2d),
CO CO
Euctuzal - Efree2 =-2
—o(1 +y)d + o (1 +20)(ES?  — EC2 4 2g)

co co actual free
—2d < Eactlfaéo Efree2 C% —d
—o(l+ y)(Eactuzal freez)

—d < Eactual Efree2 <0
U(E

%),
ac mal free

T10<EC2 gy

actual ‘free —
od+o (1+x) (S, — Ep —d).
d <EC?2 g9 oy

actual ‘free —
o2+ x)d + (1 + 2)(ESR, — Effg2 2d),
2d <EC% _EC% <34

actual ‘free  —
oG +x0)d +o(1 +3)ESD, — EpP —3d),
3d < EC2 _ gCO:

L actual ‘free

(22)

where Ceqrpon 18 carbon cost of RIES; o is price of carbon
emission rights per unit allowance; x is penalty factor; y is
compensation factor; d is interval length of carbon emission.

IV. IMPROVED ROBUST OPTIMIZATION OVER TIME
BASED ON INDEX CONTRIBUTION IN UNCERTAIN
ENVIRONMENT

Although RO, SO and other approach with the meta-heuristic
optimization are intuitive and easy to understand in solving
uncertain optimization problems [32], [33], [34], the theo-
retical research has also made rich achievements. However,
the above method requires algorithm can quickly find the
current optimal solution after each environmental change,
and can switch each optimal solution smoothly, which has
many limitations in the actual engineering environment. For
example, how to quickly find the optimal solution while
ensuring smooth switching in practice. The dynamic robust
optimization is expected to find a robust optimal solution
with time-domain robustness in a certain period of time. That
is, RO and SO and meta-heuristic optimization consider the
influence of parameter uncertainty on system performance,
while ROOT not only considers the parameter uncertainty,
but also considers the cumulative effect of these uncertainties
in the time domain.

A. THE CONTRIBUTION OF DIFFERENT INDICATORS
Based on the existing typical ROOT, reference [35] proposed
three new robustness evaluation indexes: feasible direction
(FD) RFP  stability degree (SD) RSP and sum of floating value
(SFV) RSFV  Based on these new indexes, an improved ROOT
is proposed, and each index is defined as follows:

t+q
1
R = ——— 3" [f(roaip) —f o)l (23)
p+qg+1 iy
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RSD _ f (x, aj) — [maxf (x, ;) + minf (x, «;)] (24)

n
i=t+q
RSV = 3" (f (x, i) = f (x, ) (25)
i=t—p

where p and g are the number of historical and future envi-
ronments, respectively; 7 is the threshold set by the decision
maker.

On the basis of the three new robustness evaluation indexes
introduced, although the solution with better robustness can
be obtained compared with the existing algorithms, the over-
all solution process of the algorithm is slow, which is not
conducive to the requirement of obtaining the robust optimal
solution that meets the requirements faster when facing the
optimization problem of dynamic environment. In order to
improve the solution speed of the algorithm, we first analyze
the role of the three new robustness indexes mentioned above
in the process of finding the dynamic robust optimal solution
of the algorithm. For this purpose, this paper sets up the
following seven comparison modes as shown in Table 1:

TABLE 1. List of factors to consider for different patterns.

Indicators to consider

Mode

RFD RSD RSF 14
Mode 1 J X X
Mode 2 X J X
Mode 3 X X J
Mode 4 v N X
Mode 5 X N N
Mode 6 N X N
Mode 7 N N J

The mMPB can well simulate the dynamic characteristics
of the optimization problem over time because the change of
each test peak is random [36], [37], that is, the height of each
test peak and the center point position of the peak in the test
interval will change with time. Therefore, all the experiments
are carried out on the mMPB. mMPB can be described as
follows:

F, (i() - malx {H‘ Wi x Hi{ _ci 2} (26)
=

ti+1 = H! + height_severity' x N (0,1)  (27)
' W, + width_severity’ x N (0, 1) (28)

! —
t+1 —

Clyy =G+, (29)

" sx (1 —=2A) x 7+ A x )

Vi = = — (30)
||(1—7L)><r+/'L xv,”

The experimental simulation is tested under 150 mMPB
with environmental changes. In each mode, the algorithm
runs independently 15 times and obtained results are aver-
aged, the robust results of average fitness and average survival
time are shown in Table 2. It should be noted that the running
time in the Table 2 is obtained by averaging the total time of
running 15 times in the test environment.
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TABLE 2. Algorithm optimization results under different modes.

Fitness thresholds = 40 Time window = 2

Mode Average Running Survival Running
fitness time time time
Mode 1 3.83 62.7s 63.03 76.4s
Mode 2 3.80 619s 61.56 753s
Mode 3 3.79 61.7s 61.13 74.7 s
Mode 4 3.91 67.6s 67.02 799s
Mode 5 3.87 64.2s 66.46 77.5s
Mode 6 3.89 66.7 s 64.43 78.6s
Mode 7 3.97 71.3s 68.71 83.8s

It can be seen from the calculation results of Table 2 that
RFP is defined as the feasibility direction index, so it is
used to judge whether the feasibility direction of the robust
solution obtained by the prediction process is reasonable.
As shown in mode 1, the addition of the direction judgment
step determines that the operation time of the algorithm will
be longer when the RFP index is considered. RSP judges the
robustness of the predicted robust solution by introducing
the stability index of the known robust solution and excludes
the poor stability of the predicted solution. Similarly, RS
also determines the range of the next prediction solution by
calculating the floating value of the prediction solution over a
period of time. That is, RSP uses the idea of average to judge
the theoretical average range of future predictions, and RSV
uses the idea of summation to judge the theoretical total value
of future predictions. The theoretical background of RSP and
RSFY is different, but the purpose of evaluation is the same.
Therefore, it can be found from the results that the results
of mode 2 and mode 3 are relatively close. Because RS has
the concept of mean value, it is easier to judge the prediction
solution, so the robustness of the solution is better than that
of RSPV

By comparing the calculation results of mode 4, mode
5 and mode 6 with the previous analysis results, it can be
seen that mode 4 has the best effect without considering
all the robustness indexes. When the fitness threshold and
time window are determined, the robustness indexes of the
solution of mode 4 reach 98.49% and 97.54% of the improved
algorithm, respectively. Because of the reduction of one eval-
uation index, the operation speed of mode 4 is better than that
of the improved algorithm, but it is still higher than that of
other modes.

Based on the above analysis, we can know that R is
mainly responsible for determining the robustness of short-
term prediction. Although R'P can improve the robustness
of the results of dynamic optimization problems, it will
also increase the running time of the algorithm, which is
not conducive to obtaining the optimal robust solution of
the optimization problem quickly. RSP and RSFV tend to be
medium and long predicted, the operation time is short, but
the robustness of the solution is low. Therefore, the above
three robustness evaluation indexes are constructed accord-
ing to their respective index contribution degrees, and an
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improved ROOT based on indicator contribution (IROOT-1C)
is proposed. By constructing a new combined robustness eval-
uation index considering the weight coefficient, the algorithm
can improve the robustness of the solution and reduce the
running time when calculating the optimal robust solution.
Since RSP and RSFV have similar functions, they are regarded
as a whole and the following dynamic robust optimization
algorithm based on indicator contribution is constructed.

B. THE WEIGHT COEFFICIENT OF DIFFERENT INDICATORS
Because the influence degree of different indexes is dif-
ferent, the weight coefficient is different. At present, the
common and effective weight coefficient selection methods
include AHP and CRITIC. AHP weights each index compo-
nent based on the subjective number of layers of the index.
CRITIC standardized the data of each group and calculated
the objective weight coefficient of the index. The weight coef-
ficient obtained by AHP is mainly based on the experience
of decision makers. CRITIC mainly considers the objective
information of sample data objectively. Therefore, on the
basis of the above two methods to determine the weight coef-
ficient, this paper combines the two methods. Considering the
subjective and objective aspects, the sampling AHP-CRITIC
mixed weighting is used to comprehensively weight the index
components in IROOT-IC to ensure the comprehensiveness
of the data indicators and the scientific rationality of the
results. The formula for calculating the weight coefficient
using AHP-CRITIC is as follows:
* k
o _ _®AHP®CRITIC 31

AHP=CRITIC = 37 DA HpPCRITIC Gh
where * € {FD, SD, SFV}; w},,, refers to the weight coeffi-
cient of index * obtained by AHP method; wg gy refers to
the weight coefficient of index * obtained by CRITIC method.

IC _ FD FD SD SD
R™ = wspp_crimicR™™ + ©xpp—crimicR
SFV SFV
+ Warp—criricR (32)
where wrp, wsp and wgry are the weight coefficients of RFD
RSP and RSV respectively.

In summary, the IROOT-IC algorithm framework is con-
structed as shown in Fig 4.

V. MODELLING OF OPTIMAL SCHEDULING MODEL
A. OBJECTIVE FUNCTION

min Cjgs = Cgrid + Cgas + Com + Csess + Cearbon  (33)

where Cgq is the electrical energy transaction cost with
external electric grid; Cg,; is the gas energy transaction cost
with external gas grid; C,y, is the operational and mainte-
nance cost; Cyg; 18 the transaction cost with SESS.

N T
Cgrid _ Z Z (cif;‘dpgtrtd,buy _ Cf’ltrdpgtrzd,sell) At (34)
i=1 t=1
where N is the total number of CCHP; T is the length of
the scheduling period; cif;d is the price of purchasing electric
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FIGURE 4. Framework of IROOT-IC.

energy from external grid; cff,rd is the price of selling electric-
ity energy; At is scheduling time interval.

N T

Cgas = Z

i=1 1=

(PGT,Total _ PGT,PZG) / (niGT Hyg)

Cgas
1

it it
+(HiiB,Total _ Hif;tT,ch) / (niGB Hng)
where cgqq is the price of natural gas; PftT’T”tal and PthT P26
are total electrical power of GT and electrical power of
GT when using natural gas provided by P2G, respectively;
HgB Total ynd HgT’P 2G are total heat power of GB and GT
when using natural gas provided by P2G, respectively.

At (35)

N T
_ Elec pElec Heat yyHeat Cold ~Cold
COm_ZZ (Kom Pi,t +Kum Hi,t +Kom Ci,t )At
i=1t=1

(36)

where KElec gHeat anq gCold are operation and mainte-
nance coefficient of equipment, respectively; Pﬂ“, Hﬁe‘”
and Cl.cfld are respectively the electric energy, thermoelectric

and cold electricity output by various energy equipment.

N T
sess pSESS,cha
Coess = Z E (cb’; it

i=1 t=1

_ciisspilthS,dis) At (37)

Sess Sess 101 1 1 1
where ¢} and ¢%” represent the electricity price interacting

. . SESS .ch ESS. dis -
with SESS, respectively; P;>>“" and PlS .7 are charging

and discharging power of CCHP.
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B. OPTIMIZATION CONSTRAINT

The optimization operation of RIES is a complex optimiza-
tion problem with multiple variables and constraints. In order
to ensure that the results have practical engineering sig-
nificance and meet the operating conditions of the various
equipment included, RIES operation needs to meet the con-
straints of maintaining power balance on various energy
busbars.

PIT + PPV + POT 4 PEPC + PEY 4+ PHFC

it it

EB EC P2G OAD
- PP - PIf — P9 =P (38)
HEE + HIE + HfIFC 4 HEB = gFOAP (39)
CEC + i = cforp (40)

The operating constraints of each device have been
described in detail in Section II. Meanwhile, stipulate that the
constraint of the energy interaction power between RIES and
SESS should meet the equipment parameter specifications.

N
Z ( P}SfSS,dts . P.ijSS,cha) _ P;SESS,relea
i=1

_P.IS‘ESS,abS (41)

Increase the heat energy output constraint of WHB,
as shown below.

HEE [ine + CAE [nae = G v 42)

where Y, is thermoelectric ratio of GT.
The hydrogen power balance constraint in P2G should be
considered.

C
Giis, =G, +Gl¢ 43)

C. OPTIMIZATION METHOD

The uncertainty of RES is characterized by a class of
time-varying parameters, so that the dynamic optimization
problem considering uncertainty can be transformed into a
dynamic optimization problem with time-varying parame-
ters. Secondly, the IROOT-IC algorithm is used to optimize
the above problems.

VI. CASE STUDY

A. SIMULATION SYSTEM

RIES as shown in Fig 5 was established to analyze
the improved method and carbon management measure.
As shown in the figure, the RIES consists of four sub-regions
with separate CCHP systems and different scenarios. At the
same time, each sub-region can interact with SESS and EPG
for electrical energy, and the sub-region can obtain other
domestic energy from EPG.

In order to better distinguish the difference of energy oper-
ation between different regions, in the experimental case, it is
stipulated that the residential and office areas are no longer
independently configured with ES due to their own operating
costs, while the commercial and industrial areas need to be
independently configured with ES due to the pursuit of eco-
nomic operation. Similarly, since industrial area and office
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FIGURE 5. Structure diagram of the actual RIES.

area are regions with good renewable energy endowments,
in order to further absorb renewable energy, P2G equipment
mentioned in this paper is installed in the above two regions.
The parameters of CCHP are shown in Appendix Table 7 and
Table 8.
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FIGURE 6. The RES output data and the load curve of each CCHP.

Carbon emission reduction measures include P2G and lad-
der reward-penalty carbon trading model. The parameters of
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the SESS are shown in in Appendix Table 9, and the time-of-
use price are shown in Appendix Table 10 and 11. the price of
natural gas is 2.46 ¥/m?, and Hygis9.78 kWh/m?3. The power
data of RES and the load data of each CCHP are shown in
Fig.6. 5¢°% and 55 are 0.798 kg/(kWh) and 0.385 kg/(kWh)

ree ree

respectively, this paper stipulates 100% consumption of RES.
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FIGURE 7. The results of different ROOT in the mMPB test environment.

B. ANALYSIS THE EFFECTIVE OF IROOT-IC

The test environment for the validity verification of the
algorithm in this paper is still based on the mMPB mentioned
in Section IV. The effectiveness is illustrated by comparing
and analyzing various algorithms in the same test envi-
ronment. The comparative analysis test results of different
algorithms in mMPB test environment are shown in Fig 7.
Through the comparison diagram of the experimental results,
it can be concluded that in the face of dynamic optimization

VOLUME 12, 2024



B. Zhou, E. Li: Improved Dynamic Robust Optimization Algorithm and Its Application

IEEE Access

problems randomly generated by mMPB, IROOT-IC can con-
trol each solution factor by weight distribution method, so as
to obtain a robust solution with longer survival time. Since
the results cannot be quantified from the figure alone, the
robustness results of different algorithms under the same test
environment were averaged, and the results were shown in
Table 3.

TABLE 3. Numerical results of different ROOT in mMPB test environment.

Fitness thresholds = 40 Time window = 2

Mode Average Running Survival Running
fitness time time time
Jin” ROOT 1.54 81.7s 25.95 92.6s
ROOT-TSE-
CCFV 3.97 71.3s 68.71 83.8s
IROOT-IC 4.12 67.8 s 70.13 81.6 s

From the calculation results in Table 3, compared with
the ROOT-TSE-CCFV with better performance, the running
time of the improved method decreases by 4.42% when the
average fitness of the robust solution is increased by 3.78%
in the test condition with the fitness threshold fixed at 40.
Similarly, when the time window is 2, the robust solution of
the proposed improved method decreases by 2.70% when the
production time is increased by 2.07%. In summary, IROOT-
IC can further reduce the running time of the algorithm while
obtaining higher solution robustness.

C. ANALYSIS OF SESS CAPACITY CONFIGURATIONS
Aiming at the effectiveness of IROOT-IC in calculating SESS
capacity configuration under uncertain conditions, the fol-
lowing four modes are established, and SO is introduced as a
comparison algorithm.

Mode 1: SO is used for uncertainty calculation while with-
out considering carbon reduction measures.

Mode 2: SO is used for uncertainty calculation while con-
sidering carbon reduction measure.

Mode 3: IROOT-IC is used for uncertainty calculation
while without considering carbon reduction measure.

Mode 4: IROOT-IC is used for uncertainty calculation
while considering carbon reduction measure.

In order to make the system run more closely to the actual
engineering environment, from the perspective of SESS, it is
stipulated that the energy injected into SESS by the system is
positive, and the energy withdrawn from SESS is negative.
Through calculation in different modes, the results are as
follows in Table 4 and Fig 8.

TABLE 4. SESS capacity configuration results and RIES interaction costs.

Mode Capacity configuration RIES interaction cost
Mode 1 14,973.67 kWh 3,190.07 ¥
Mode 2 15,578.01 kWh 3,618.85%
Mode 3 15,891.79 kWh 3,380.46 ¥
Mode 4 16,016.11 kWh 3,853.89 ¥
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FIGURE 8. SESS capacity configuration in different modes.

From Table 4 we know that the interaction cost is the
highest under mode 4. Compared mode 4 with mode 2, RIES
interaction cost is increased by 6.5% and SESS capacity
configuration is increased by 2.8%. It also can be found
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that when RIES consider carbon emissions measure which
including P2G and CTM, the interaction cost between RIES
and SESS is higher than that without considering carbon
emissions measure.

To ensure the full utilization of RES in various regions,
the interaction between RIES and SESS is more frequent,
so the interaction cost with SESS increases. Comparing mode
1 and mode 3, we could obtain that after using IROOT-IC
to dynamically optimize the renewable energy considering
uncertainty in RIES, the robust solution of renewable energy
is obtained, which improves the utilization efficiency of RIES
for RES, thus increasing the interactive power between RIES
and SESS. The capacity configuration of SESS and inter-
action cost of RIES are increased. Comparing mode 3 and
mode 4, it can be seen that when carbon reduction mea-
sures are not adopted, RIES does not need to store excess
renewable energy into SESS in order to absorb renewable
energy, thus reducing the capacity of SESS and reducing the
interaction between RIES and SESS. When carbon reduction
measures equipment is added, it is necessary to consume
excess renewable energy through P2G equipment and SESS,
thereby increasing the capacity configuration of SESS and
increasing the energy interaction cost between RIES and
SESS. Comparing mode 2 and mode 4, it can be seen that
SESS reaches full charge at 12:00 every day, OA area mainly
charges inside SESS, and CA area mainly takes electricity
from SESS, which is in line with the distribution law of load
and renewable energy in each area mentioned in Fig 8. In the
subsequent simulation verification of this paper, the SESS
capacity is 16016.11 kWh.

D. ANALYSIS OF RIES OPERATING COST AND OPTIMAL
SCHEDULING RESULTS

To verify the impact of different RES uncertainty calculation
methods and carbon emission reduction measures on RIES
optimal scheduling and carbon emissions, this section still
takes the four modes mentioned above as examples to calcu-
late the operating costs and carbon emissions of the system.

TABLE 5. (A) Operation cost of RIES under different model. (B) Operation
cost of ries under different model.

»)

Cost Electrical Gas purchase Operatlon and
purchase Maintenance
Mode 1 11,185.39 ¥ 64,045.36 ¥ 5,922.09 ¥
Mode 2 18,007.45 ¥ 56,564.43 ¥ 5,736.29 ¥
Mode 3 10,964.22 ¥ 61,383.79 ¥ 5,808.86 ¥
Mode 4 17,469.73 ¥ 54,044.74 ¥ 5,67743 ¥
B)
Cost Carbon trading Carbon emission Total operating
weight cost
Mode 1 / 86,532.37 kg 8434291 ¥
Mode 2 7,532.59 ¥ 78,869.75 kg 91459.61 ¥
Mode 3 / 84,953.43 kg 81537.33 ¥
Mode 4 7,281.93 ¥ 78,130.35 kg 88,327.72 ¥

The operating costs and carbon emissions of RIES under
the above four modes are shown in Table 5. From the above
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data results, it can be seen that when dealing with the optimal
scheduling problem of RIES considering renewable energy
uncertainty, regardless of the CTM, the IROOT-IC can obtain
more economical operating costs and lower carbon emissions
than SO. The following is a detailed description of the influ-
ence of different CTM on the operating costs and carbon
emissions of RIES, taking mode 3 and mode 4 as examples.

Mode 4 considers of the ladder-type CTM in the optimal
scheduling of RIES, and the purchase price of carbon emis-
sion quotas shows a stepwise increase. Therefore, for the
energy supply of RIES operators, it is cheaper to purchase
natural gas to produce electricity than to purchase electricity
directly from EPG. However, since RIES burning natural
gas is in a state of high carbon emissions at this time, the
cost of choosing gas purchase instead of electricity purchase
has been lower than the cost of high carbon emission quo-
tas generated by burning natural gas. The ladder-type CTM
limits the carbon emissions of the RIES to a certain extent.
Therefore, compared with mode 3, mode 4 increases the cost
of electricity energy purchase by 37.24% while the cost of
gas energy purchase decrease 11.68%, which make the RIES
reach a new balance while meeting the load requirements and
maintaining low-carbon operation. Compared with mode 3,
mode 4 reduces its own operation and maintenance cost by
increasing the energy interaction with EPG and reducing
its own equipment output. From Table 4 we can see that
the operation and maintenance cost is reduced by 2.26 %.
Similarly, after the introduction of the ladder CTM, although
the total operation cost of the RIES in model 4 increased
by 6790.39 ¥compared with mode 3, the carbon emissions
decreased by 5823.08 kg, that is an 7.02% reduction in
emissions, reflecting that under ladder-type CTM the RIES
can reduce emissions while ensuring lower operating costs.
In summary, the ladder-type CTM has stronger constraints on
carbon emissions compared with the traditional CTM, which
can maximize carbon emissions and guide RIES to achieve
carbon emission reduction. Model 4 is taken as an example
to analyze the optimal scheduling results of each region of
the system.

The optimal scheduling results of RIES electric load are
shown in Fig 9. In the period when EPG’s selling price is at
a low point, since SESS is not directly connected with EPG,
SESS attracts all sub-regions to purchase electricity from the
external grid and store it into SESS by raising the higher
purchasing price. This action loads the current energy storage
system to arbitrage the peaking and valley price difference,
for example, at 03:00 to 05:00 At this time, RA buys electric
energy from EPG and stores it into SESS. At the same time,
from 0:00 to 05:00, CA’s electric load is low during this
period, so it can purchase electric energy from SESS and
EPG to meet its demand. At this time, the external electricity
price is low, and there is no need to start carbon emission
equipment, which reduces the operating cost of the overall
system while maintaining low carbon emission. In the PV
output period from 06:00 to 17:00, RA has a low power
consumption, so the excess power will be sold to the external

VOLUME 12, 2024



B. Zhou, E. Li: Improved Dynamic Robust Optimization Algorithm and Its Application

IEEE Access

10000 , Residental area .

5000 -y

Power kW

oF

]
--_--_E-. —
il ST
15

=5000
0 ) 0

=)
ra
A

Commerical area

10000 | d

PO, | || || || i
o |- ST -

]
o L

Tower kW

- e Grid G W Intermal Coupling
B Renewable Energy NI SESS —0— Electrical Load
(a) The electric power optimal scheduling results of RA and CA.

B < 10* . . Industrial arca .

Power/kW

Power kW

lime'h
. ower Grid GT W Tnternal Coupling I HEC:
|

I Roncwable lncrgy NI SESS —6— Flcctrical 1.oad

(b) The electric power optimal scheduling results of IA and OA.

FIGURE 9. The optimal scheduling results of electric power in each region
of RIES.

power grid, CA region’s own PV cannot meet the require-
ments of the power load, so it needs to buy power from the
external power grid, and through the internal energy coupling
equipment to convert the power into other forms of energy
supply to the user. From 18:00 to 22:00 at night, the CA power
load is still high, so GT needs to be started to produce part
of the electricity. It can be seen from the above that in order
to meet the low-carbon requirements of the system, RA and
CA basically do not use high-carbon emission equipment
such as GT or GB, and at the same time, they reasonably
interact with SESS to achieve their own low cost and low
carbon emission operation requirements. Similarly, for TA
and OA, due to their better renewable energy endowment,
P2G equipment is reasonably installed. It can be seen that
a large amount of renewable energy power generation is sold
to P2G during peak electricity prices, while a certain amount
of renewable energy is delivered to P2G. At the same time,
in order to ensure the low-carbon and efficient operation of
the system, IA and OA themselves do not use high-carbon
emission equipment such as GT or GB.

The optimal scheduling results of RIES heat load are
shown in Fig 10. On the whole, more than 88.5% of the heat
load of the entire RIES is provided by the self-configured
GB. The following is a detailed analysis of each region.
Since no P2G equipment is installed in the RA and CA, the
heat load in these two areas is mainly provided by GB heat
generation. From 18:00 to 24:00, when the PV equipment
no longer provides power, the system needs to start GT to
provide power for RA and CA, and the heat generated by
GT power generation can provide heat for itself through the
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FIGURE 10. The optimal scheduling results of heat power in each region
of RIES.

heat exchange device. Thus, it can be seen that RIES uses
energy gradients efficiently. For IA and OA, by introducing
the P2G model, HFC can provide heat energy through the
absorption of renewable energy. It can be seen that HFC can
provide objective heat energy supply for IA and OA with
good renewable energy endowments. In addition to the heat
energy provided by HFC and GB, a small amount of HE and
EB is needed to provide a small part of the heat supply for
areas with high heat load demand such as IA. In general,
the introduction of P2G model can also reduce the carbon
emissions of the system and provide more varieties of energy
supply for the load side.

The optimal scheduling results of RIES cold load are
shown in Fig 11. On the whole, due to the high use of GB
in the heat load, the carbon emissions of the system are high,
so in the cold load, more electric refrigeration equipment is
used to provide cold energy for the load. It can also be seen
that for RA and CA, during 18:00 to 24:00, when the GT
equipment of the system runs power generation, the high-
temperature waste heat generated is partially transferred to
HE to produce heat energy through WHB, and the other part
is transferred to AC to produce cold energy. In IA, when the
renewable energy output is low from 0:00 to 05:00 and 20:00
to 24:00, GT power generation is also used to provide electric
energy for the system, and AC is also started to generate cold
energy by absorbing high-temperature exhaust gas to provide
to load users. To sum up, in order to improve the cascade
utilization rate of different energies and reduce the carbon
emissions of the system, the system completes the coupling of
electricity, cold and heat energy through coupling equipment,
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and meets the requirements of users for different energy
sources at a lower cost.

E. ANALYSIS OF P2G REVENUE PROCESS
In order to verify the effectiveness of the P2G in RIES carbon
emission reduction, the following three modes are set up.

Mode 5: Optimal scheduling under IROOT-IC and carbon
trading model without considering P2G.

Mode 6: Optimal scheduling under IROOT-IC and carbon
trading model considering traditional P2G.

Mode 7: Optimal scheduling under IROOT-IC and carbon
trading model considering P2G.

TABLE 6. The optimal scheduling results of different modes of P2G.

Mode Operating cost Carbon emission Carbon cost

Mode 5 90,897.36 ¥ 78,129.58 kg 16,616.13 ¥
Mode 6 90,176.56 ¥ 77,637.27 kg 15,993.79 ¥
Mode 7 88,327.72 ¥ 77,130.35 kg 15,117.51 ¥

The operation results of each mode are shown in Table 6.
mode 1 does not include P2G devices, so excess renewable
energy can only be stored in SESS or consumed and supplied
by electric heating and cooling coupling equipment. In mode
2, P2G equipment is added, which can convert excess electric
energy into natural gas during the surplus period of renewable
power and provide to GT and GB, which reduces the cost
of purchasing electricity and gas from external power grid
and the dependence on SESS. The operation cost of RIES
is further optimized. In mode 3, RIES first inputs abundant
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renewable energy into EL equipment to produce hydrogen
Part of the hydrogen energy is transported to HFC for ther-
moelectric production, and the other part is transported to
MR synthetic natural gas. The thermoelectric production
efficiency of hydrogen energy in HFC is high, and at the
same time, an intermediate energy conversion link is reduced.
At the same time, natural gas is synthesized by MR and then
transmitted to GB and GT for energy supply, which reduces
the energy cascade loss and reduces its own carbon emission.
At this time, the system operating cost is optimal.

VII. CONCLUSION

As the foundation of the future energy system, how to
reduce the carbon emissions of RIES is crucial for the low-
carbon operation of the whole society. Based on the above
considerations, on the basis of the establishment of RIES
model, this paper proposes a comprehensive P2G model
with multi-energy output and a SESS model considering
shared characteristics and establishes a ladder type reward-
punishment CTM model considering carbon emission inter-
vals. Aiming at the uncertainty caused by RES, an improved
dynamic robust optimization algorithm considering the
index contribution degree is proposed. The effectiveness of
the proposed dynamic optimization algorithm and carbon
reduction measures was verified through scenario compar-
ative analysis experiments, and the conclusions were as
follows:

(1) An improved ROOT based on index contribution
is proposed. Under the mMPB dynamic problem testing
environment, the average computational robustness of the
proposed algorithm is improved by 3.56%, and the compu-
tation time is shortened by 2.93%. The improved ROOT can
better obtain the optimal robust solution when considering the
uncertain factors.

(2) This paper considers the SESS and P2G models in
the RIES equipment part, and the ladder type reward and
punishment CTM in the mechanism part. When the uncer-
tainty of RES is considered, the proposed improved ROOT
is used to optimize of RIES. The experimental results show
that the carbon emission reduction measures in this paper can
reduce the carbon emission of the whole system by 8.13%,
thus ensuring the low-carbon and efficient operation of
RIES.

(3) The P2G model can better rationally plan and utilize the
internal energy of RIES, enrich the internal energy coupling
relationship of RIES on the basis of reducing the energy loss
of RIES, and provide more types of energy for the load side.

The carbon emission reduction measures and improved
optimization algorithms have certain engineering practical
significance for solving optimization scheduling problems
under uncertain engineering environments in the future. How-
ever, at present, the method is still only suitable for solving
single-objective optimization problems, and for solving any
multi-objective dynamic optimization problems, it is the next
problem to be solved.
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APPENDIX A TABLE 10. Units for magnetic properties.
See Tables 7-11.

TABLE 7. Units for magnetic properties. Price type Time interval Purchase price Sell price
Peak time PR 0.759 0.415
Equipment RA CA 1A OA 00:00-02:00
. 05:00-07:00
PV 5000 5000 5000 5000 Normal time 12:00-14:00 0.510 0415
WT / / 10000 10000 23:00-00:00
ES / 1000 / 2000 -00-04:
GT 5000 5000 8000 3000 Valley time (1)(5)}88_(1)‘71}88 0.261 0415
WHB 5000 5000 8000 5000
GB 5000 5000 9000 5000
gg 2888 2888 2888 g 888 TABLE 11. Units for magnetic properties.
AC 5000 5000 8000 5000
HE 4000 4000 4000 4000 . L . .
EL / / 4000 2000 Price type Time interval Purchase price Sell price
MR / / 2000 1000
. 08:00-11:00
00:00-02:00
Normal time 02 00-07:00 0475 0.435
TABLE 8. Units for magnetic properties. 12:00-14:00 ' '
23:00-00:00
Valley time (1)(5)88:(1)47‘88 0.271 0.435
Parameter RA CA 1A OA = =
n 0.35 0.35 0.35 0.35
GT
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ARTICLE INFO ABSTRACT
Keywords: Regional integrated energy system (RIES) is an effective way to achieve the goal of energy conservation and
Heating network model emission reduction of the whole energy system, and regional heating network (HN) is an important energy

Optimal scheduling

Particle swarm optimization
Regional integrated energy system
Robust optimization

transmission way in the RIES. This paper focuses on the RIES optimal scheduling problem considering HN.
Firstly, the RIES structure model with multiple combined cooling heating and power (CCHP) subsystems is
established. Secondly, according to the basic principle of energy transmission through pipelines, a general
simplified model of HN considering node flow balance and heat flow constraints is established. At the same time,
considering the excellent distribution of solutions in the population method and the operability of the robust
optimization over time (ROOT) in solving dynamic optimization problems, an improved ROOT based on particle
swarm optimization (PSO) is proposed. Finally, an optimal scheduling model with the goal of minimum daily
operating cost is established. The simulation results show that the improved ROOT can reduce the RIES operation
cost by 4.58 %, and the operating cost of RIES can be reduced by 6.34 % after the HN is configured. Considering
the above two measures, the total operating cost of RIES can be reduced by 10.93 %.

time t

Abbreviation
RIES, Regional integrated energy system;
CCHP, Combine cooling heating and power;

1. Introduction

Recent years, RIES based on CCHP can carry out unified planning

HN, Heating network; . o . .

PSO, Particle swarm optimization; and c9ord1nated opt'lmlzatl'on operation [1,2], which has attracted the
ROOT, Robust optimization over time; attentllon of academl.a and 1ndustry. L3,41. .

DOP, Dynamic optimization problem; With the gradual increase of various scales of CCHP in the same area,

various CCHPs form RIES through the interconnection of power grid and
HN [5]. However, compared with the power grid transmission model,
the HN transmission model is more complex. As an important energy
channel connecting the CCHP, the simulation modeling of the energy

EPG, External energy grid;
SOC, State of charge;
mMPB, Modified moving peak benchmark;

N, Total number of CCHP; T X N

T, Length of scheduling period; transmission model of the HN can further analyze the coupling adjust-
i Serial number of CCHP; ment ability between the units in the whole region and improve the
¢ Time period; stability of the system operation. On this basis, the operation charac-
At, Scheduling interval; teristics of the overall operation process can also be grasped to improve
px, The electrical power output of the equipment X in the i —th the efficiency of optimal scheduling. In the aspect of HN modeling. Ref

[6] established a linear model of the district HN by referring to the

CCHP at time 5 equivalent infinitesimal replacement theorem under the assumption

v . . .
Hi, The. heat power output of the equipment ¥ in the i —th CCHP that the temperature of the load nodes is approximately equal. Ref [7]

attime t; proposed a density-based topology optimization to establish a nonlinear
Cft, The cold power output of the equipment Z in the i —th CCHP at
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Fig. 1. The structure of RIES.

HN transmission model. According to the characteristics of thermody-
namic constraints, Ref [8] introduced the equivalent pipeline model and
the analytical heat source load function into the HN modeling and
proposed a new dynamic model of thermal network. In Ref [9,10], a
mixed integer quadratic constraint programming model is proposed for
a new generation of district HN integrated with waste heat sources,
considering the temperature constraints within the HN. In Ref [11],
considering the problem of nonlinear discretization in heat energy
transmission, a method based on the combination of double-labeled
characteristic line method and full analytical method is proposed to
describe the HN model, which enhances the accuracy of state estimation.
The above method describes the HN energy transmission model by
applying other complex formula models to achieve the accurate estab-
lishment of the model, but this is not conducive to the rapid solution of
the entire multi-constrained multi-coupled CCHP scheduling problem.
Therefore, under the condition of ensuring the accuracy of the model in
the acceptable range, the power transmission model of the HN is opti-
mized by Taylor series expansion, and a simplified heat network model
close to the practical application of the project is proposed.

At present, there are many methods for RIES optimal scheduling, but
in actual operation, the optimization problem of RIES is a kind of dy-
namic optimization problem, which can usually be solved by robust
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optimization (RO) or population-based stochastic optimization (SO).
However, the above two methods do not consider the dynamic influ-
encing factors in the problem. In order to solve this problem, ROOT is a
new method to solve this kind of dynamic optimization problem because
it can combine the advantages of the above two methods [12]. Due to
the adaptability to DOPs, ROOT has achieved rapid development. Ref
[13] analyzed the solution behavior of ROOT based on the approximate
model combined with the radial basis network model. Ref [14] intro-
duced the multi-population framework into the original framework and
used the advantages of multi-population to search for useful information
faster. Adam proposed a combined ROOT solution method [15], which
significantly improved the robustness of ROOT results. Other scholars
have carried out research on the predictive robust solution method of
ROOT [16,17], including replacing the prediction method and
enhancing the accuracy of the prediction results by online mode. Ref
[18] proposed a ROOT based on random sampling method to calculate
the DOPs. Ref [19] proposed two parts of ROOT, one is used for
robustness estimation, and the other is responsible for calculating
resource allocation. Based on the advantages of ROOT in different en-
vironments, a hybrid dynamic optimization algorithm driven by envi-
ronment is proposed in Ref [20]. At present, the main problem faced by
ROOT is that the solution speed is slow, and the distribution of potential
solutions is not sufficient. Therefore, this paper combines the advantages
of particle swarm optimization in particle distribution and iterative
convergence and proposes ROOT-CPSPSO based on the improvement of
PSO. The main contributions of are as follows:

(1) The heat energy flow model between CCHPs in multi-area RIES is
established, and the flow characteristics and power characteris-
tics of HN nodes and pipelines are analyzed. At the same time, a
power-flow-temperature model of the HN is proposed under the
condition of satisfying the engineering error.

For the optimal scheduling problem, considering the convergence
and distribution of the population algorithm, combined with the
advantages of ROOT for solving DOPs, a combined optimization
method is proposed.

2

—

2. Modeling of RIES considering multi-energy flow

The structure of RIES discussed is shown in Fig 1. From the inside,
the area contains multiple CCHP, each CCHP is connected to each other
through the node transformer. From the outside, EPG provides elec-
tricity, water and natural gas for the entire region. The internal structure
of i — th CCHP is shown in Fig. 2. Energy supply side mainly includes
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Fig. 2. The structure of CCHP.
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Fig. 3. The model of RIES internal heating network.
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Fig. 4. Piping parameter model of heating network.

energy generation equipment, which is composed of wind turbine (WT),
photovoltaic (PV), gas turbine (GT) and gas boiler (GB). Energy con-
version part is mainly composed of electric heating and cooling coupling
equipment, which is composed of waste heat boiler (WHB), electric
boiler (EB), electric chiller (EC), absorption chiller (AC) and heat
exchanger (HE). The energy demand side is mainly composed of the user
’s electricity, heat and cold load. The HN is connected to the heat bus
and the heat load through valves V1 and V2, respectively. When CCHP
injects heat into the HN, the valve V1 opens, V2 closes, and the HN is
directly connected to the heat bus. When the HN absorbs heat from the
CCHP, the valve V1 closes and V2 opens, and the HN is directly con-
nected to the heat load. At present, the modeling of CCHP system has
been more unified, so detailed modelling work of the equipment in
CCHP can be found in Ref. [21-22].

3. Modelling of heating network

This paper studies the HN that provides heat energy interaction for
each CCHP in RIES, which belongs to the ’source-source’ network.
Generally speaking, RIES has higher requirements for heat energy
transmission. Therefore, this paper designs the use of ring HN layout to
enhance the safety and reliability of heat energy supply. In the actual
engineering environment, if the HN between any two CCHPs is
damaged, the available shut-off valve will disconnect the pipeline to be
repaired from the rest of the pipeline. The internal HN model of RIES is
shown in Fig 3, and the heat energy distribution of the annular HN are
shown in Fig. 4. In these figures, black indicates the pipe, and red in-
dicates the direction of heat medium flow. The HN between the i —th
CCHP access network node i and the j — th CCHP access network node j is
selected as an example to explain the variables in the HN. It is specified
that the heat medium temperature at node i and node j is T; and Tj,
respectively. The heat power contained in the heat medium flowing out
of node i is Hy,;, the flow rate of the heat medium is g, and the initial
temperature of the heat medium is Tj;,;. The heat medium flows through
the HN with a length of L. When it flows into node j, the heat power
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contained in the heat medium is H;, , the flow rate of the heat medium is

it

qj;,» and the initial temperature of the heat medium is Tj; ..

In view of the
fact that CCHP is the supply side and the receiving side of heat energy,
the heat medium does not transfer after flowing into CCHP. Therefore,
when the heat medium flows from node i to the i — th CCHP, the heat
power contained is H;,, the heat medium flow rate is g;;, and the heat
medium temperature is T;;. Due to the long-distance flow and trans-
mission of the heat medium, there is a heat loss AH, so the heat medium
parameters of the pipe flowing into the node i are different from those of
the pipe flowing out of the node j.

Similar to the power grid, the HN is essentially an energy network
containing heat medium flowing through. Its parameters can reflect the
changes of energy parameters of each pipeline and node. At the same
time, HN is also the main network system connecting the heat source
and heat load, which undertakes the transmission and exchange of heat
energy. In this paper, the hot water network of the scene is taken as the
research object. According to Kirchhoff ’s law and Sukhov ’s pipeline
temperature drop formula, the coupling relationship between the pa-
rameters of the HN is modeled. At the same time, it is stipulated that the
energy is negative when the heat energy flows out and positive when it
flows in.

3.1. Equilibrium equation of HN nodes

According to Kirchhoff ’s law and the first law of thermodynamics,
any HN needs to satisfy the node energy balance constraint. Therefore,
for any node in the HN, the total flow of heat medium flowing into the
node and the heat power contained in the heat medium should be equal
to the total flow of heat medium flowing out of the node and the heat
power contained in the heat medium.

qit + Zqij.t =0 (1)
JjeQ

Hi,t + ZHij,t =0 (2)
JjeQ

where Q is the set of nodes connected to node i.

3.2. Temperature-flow equation of HN pipeline

According to Sukhov ’s temperature drop formula, The heat medium
with temperature of Ty, starts from the node i, flows through the pipei—
J, and the temperature Tj;, when it flows out of the node j should meet
the following conditions:

ALy
T,)e Grtic + T, (3)

Tij,t = (Tif-l -
where 1 is the total heat resistance per kilometer; T, is the ambient
temperature; C, is the specific heat capacity of heat medium; p is the
density of the heat medium.
Ly

The nonlinear term e %*%: in the (6) is not conducive to the opti-
mization calculation. Therefore, we regard the pipe length L; between
i — j as an independent variable, and use the Taylor series to expand the

Ly
nonlinear term e %4« at L = 0 The first-order Taylor series expansion
Ly

results of the nonlinear term e %/%: here are as follows:

Ly
e Gorlic i1 —

AL
- (C))
CoPGije

Considering (6) and (7), the temperature drops after the heat me-
dium flows through the HN pipeline with a length of L; can be obtained
as follows:
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Table 1
Linearization results and relative error of AH.
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Hy=500 KW Lj=1.5 km

Hjj=500 KW L;=2.0 km

Temperature T;;:=80 °C T;;:=85 °C T;j:=90 °C T;;:=80 °C T;;:=85 °C T;;:=90 °C
Exact 37.5202 39.7727 42.0115 49.9484 52.9015 55.8383
Approximate 37.6991 40.0553 42.4115 50.2655 53.4071 56.5487
Relative error % 0.48 0.73 0.91 0.65 0.95 1.27
MTye — Te)Ly
T, =Ti — ZATUE Te)my 5) in __
e = Lot HMn = A(Ty; — T.) Ly
ot Cppqut 1j j“( ij e) ij (1 1)
ax __ ax
H™ = Gopvi™(Tij — T.)S;
3.3. Heat power equation of HN pipeline
where v{j** is the maximum flow velocity of the pipei—j, m s1 8 j is the

According to Sukhov ’s temperature drop formula of the HN, the heat
loss Ah per unit length of the pipeline is expressed as follows:

Ah = A(Type — T.) ®)
where Ty, is the temperature of ambient. For a stable HN, it is assumed
that the conduction coefficient of the network is constant with the
ambient temperature. Therefore, while the heat medium flows through a

pipe i —j of length L;, the total heat loss AH;;; is as follows

Ly L
AHj, — / Ahdx — / A[Ty(x) — T ()] dx %)
0 0

Substituting (8) into (10), the calculation of AHj;, can be obtained as
follows:

ALy
1-— eicp/’qij.t

AHj, = (Hijvt - ppqij_[Te> ®

In a stable environment, the physical characteristic parameters of the
heat medium and the ambient temperature can be regarded as constants,
so the pipeline thermal power loss AHj;, can be regarded as a function of
the ambient temperature, pipeline length and initial heat power. Ac-
cording to the previous results, the Taylor expansion (4) of the nonlinear
term is substituted into (8), and the linear simplified expression of the
heat loss power is obtained as follows:

AHU 'f\"zﬂ(TufTe)LU (9)

Due to the use of linear expressions instead of nonlinear expressions,
errors will occur. In order to check whether the error meets the re-
quirements of calculation accuracy and verify the feasibility of substi-
tution, the exact value of AHj, is calculated by (8), and the approximate
value of AHj;, is calculated by (9). The heat power loss and relative error
calculated by different formulas are shown in Table 1. From the results
of the Table 1 we can know that when the initial temperature T;,= 90 °C
and the pipeline length L;,=2.0 km, the relative error between the
estimated value and the actual value is the largest, which is 1.27 %.
However, the relative error is still lower than the error requirement of

+5 % stipulated by the national HN power measurement. Therefore, the

estimated value calculated by (9) can be applied to practical engineer-
ing. Therefore, to improve the timeliness of RIES optimal scheduling
results, the simplified formula shown in (9) is used to optimize the RIES
scheduling calculation composed of HN and cogeneration.

The heat energy transported by the HN is related to the physical
characteristics such as pipeline specifications, so the following con-
straints on the energy transmission of the HN should be satisfied:

H" < Hyj < H™ 10)

cross-sectional area of the pipe i — j.
4. Optimal scheduling algorithm

At present, for the solution of optimization problems considering
multi-coupling constraints, according to the complexity of problem
constraints, RO or SO based on population strategies can be used. RO
comprehensively considers the influence of each coupling constraint
condition, and the expected robust optimal solution is still applicable
when the constraint fluctuation is large. The population based SO uti-
lizes the distribution and optimization characteristics of the population
in the constraint space of the problem solution and expects to obtain the
optimal solution quickly when the external environment changes.
However, both of the above methods have disadvantages. The optimal
robust solution obtained by the former in solving practical problems is
more conservative and cannot meet the requirements of economic
operation of the system. The latter requires the algorithm to obtain
higher accuracy while reducing the complexity of the algorithm itself,
and to obtain and switch to a new optimal solution in time. In engi-
neering practice, the change of equipment parameters is often very fast,
and the required calculation accuracy and performance cannot be
achieved.

Therefore, combining the characteristics of the above two optimi-
zation methods, Yu et al. proposed ROOT [12]. The core idea of this
method is to apply the optimal solution obtained in a certain environ-
ment as a better solution with certain satisfaction to one or more
continuous dynamic environments in the future. The robustness of the
solution is defined by the survival time R* and the average fitness RY of
each robust solution proposed in Ref [12]. The mathematical expression
is:

st _ J0,iff(x, ) < 6

R (x,t,0) = {max{l\t <i<t+1l:f(x,a) > &}, otherwise a2
of 1 t+T-1

RY(x,t,T) = > flea) 13)

where T is time window, & is the robustness threshold, [ is the time
duration. R* represents the length of time that the robust solution
maintains in the time domain under the condition that the pre-
determined robust threshold is satisfied, and RY represents the average
fitness of the robust solution in the time domain within the pre-
determined time window. At present, ROOT performs poorly in global
search and convergence speed. In view of the above problems, consid-
ering that the population algorithm has strong global search ability and
fast convergence speed to the optimal solution, this paper replaces the
improved PSO as the optimizer into the ROOT framework, and proposes
a ROOT based on PSO with combined parameter strategy (ROOT-
CPSPSO).
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4.1. PSO combination parameter strategy

4.1.1. Activating factor strategy

In PSO, the potential solution of the optimization problem can be
regarded as a particle. All particles have a fitness value determined by
the objective function and a velocity parameter that determines the
position and flight direction of each particle. Each particle follows the
current optimal particle at this rate vi4(t) to search in the solution space.
The optimal solution found by a single particle is called the individual
optimal solution s;,, and the optimal solution obtained by the entire
population search is called the global optimal solution sg,. To ensure that
the particles in the solution space of the problem can jump out of the
point in time when they fall into the local optimal solution, maintain the
continuous search action and finally find the global optimal point.
Compared with the global optimal solution s, the role of the individual
optimal solution s;, only provides the direction vector guidance for the
particle to converge to the optimal target solution and does not affect the
overall consciousness of the particle to approach the global optimal
point, so the individual optimal solution s;, is modified. The specific
correction method is to increase the vitality coefficient A before item s,
to ensure that the individual cognitive information (s; —uig) still has
certain vitality when the particle searches for the current global optimal
point. The PSO after adding the activation factor A, the improved par-
ticle swarm optimization algorithm updates the velocity and position of
the particles in the iteration through the individual optimal solution and
the group optimal solution. The iterative formula for the velocity and
position is shown below.

Via(t+1) = @agapVia(t) + nyrand()A(s — wia(t)) + norand() (sg0 — ul-d(t))
14)

Ug(t+1) = ua(t) +vig(t+1) (15)

where uy(t) is the current position of the particle; v;4(t) represents the
particle moving speed; 7; and 7, are cognitive learning factor and social
learning factor respectively, and w is inertia weight.

4.1.2. Adaptive inertial particle strategy

Considering that the evolutionary speed factor and the aggregation
factor are the main factors affecting the optimization of particle swarm
optimization, the above two factors are optimized, and a new evolu-
tionary speed factor Pg, and an aggregation factor P, are proposed.

1
7 exp(min (per ). (P2 ) 1 "
P, tog — : (17)

pop pop
exp (min( (sgo X pop — st) , (Esio — Sgo X pop))) +1
1 1

where Pj2% and P2%" are the optimal fitness values of the current
algebraic and previous algebraic algorithms, respectively, pop is the
number of populations set. The updated inertia weight is expressed as

follows
WDadap = 1.0 - Pspe X Wsep +Ptog X Wrog (18)

where g is @ random number within 0.4 ~ 0.6; wy, is a random
number in the range of 0.05-0.20.

4.2. ROOT-CPSPSO

The improved PSO through the above optimization strategy is
substituted into the ROOT framework to obtain ROOT-CPSPSO. The
historical data in the database is the saved operating data, the current
data is the optimal data at the current moment, and the forecast data is
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S(xa) [ :___D__L____:
emg+l Predic'ting future ! :‘_
[iness I Current data |
: !

No
Yes
Environment change?

-

. |

H Average Fitness |

R (x.1,5) IR (xnT) !
|
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Fig. 5. Process of ROOT-CPSPSO.

the data calculated by the forecaster. The detailed introduction of the
module is visible reference [23]. The algorithm flow is shown in Fig 5. In
ROOT-CPSPSO, the current environmental fitness value is first calcu-
lated, and the future fitness value is predicted by the database data in the
ROOT module, and then the initial robust solution is calculated by the
CPSPSO. The obtained robust solution is judged and optimized by the
survival time index and the average fitness index in the ROOT module,
and finally the optimal dynamic robust solution in the current target
environment is obtained.

5. Optimal scheduling model

5.1. Optimization objective

minCRIES = an'd + Cgﬂx + Com (19)

where Cgyq is the electrical energy transaction cost with EPG; Cys is the
gas energy transaction cost with EPG; C,y is the maintenance and
operation cost of RIES.

T
Cou =3 > (PG - ctrtpf) At (20)

N
=1 t=1

where c‘gf:d is the purchase price of electric energy; P is the amount

of electricity purchased; cfftrd is the sale price of electric energy; Pf;id’SEIl is
the amount of electricity sold.

N T
Cous = D D cans [P/ (15 Hig) + HE? [ (1 Hye) | At 1)

I
-

t=1

where cg is the price of natural gas; 7°T and 7% are the efficiencies of
GT and GB, respectively; Hy, is the heating value of natural gas.

N T
Cm=3%" (Kfffpfﬁ“ -+ Kleatpfteat +K§,‘;}dcffld> At (22)

i=1 t=1
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Fig. 6. The schematic diagram of RIES structure.

where KElec, gHeat gCold are the operating and maintenance cost of

electric, heat and cold energy equipment, respectively; PEZ“ HHea‘ and
Cic_fld are the output of electric, heat and cold power of various types of
energy equipment, respectively.

5.2. Operational constraints
5.2.1. Power balance constraint

PYT 4 PFY 4 POT | PG | pES _ pB _ piC _
H(_?B HHE HEB HNH
CEC + CAC CLOAD

PLOAD

HLOAD ( 2 3)

where PLOAP HEOAD and CIAP are the user ’s electricity, heat and cold
load, respectively.

5.2.2. Equipment output constraint

Pix.min < PX < Pix.max
HYmm < HY < HYmax

it —

Cme < CZ < dmax

it —

(24)

where Pft'mi“ and P};™ are the lower and upper limits of electric
equipment X output, respectively; H;; M0 and HY X are the lower and

upper limits of heat equipment Y output, respectively; C2™" and CZ™*
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are the lower and upper limits of cold equipment Z output.

5.2.3. Heat power transfer balance constraint

HE [ e +-CIE [ nee = (25)

z J’gt’?whb
where 7y, 1, and n,,;,;, are the efficiency of HE, AC and WHB, respec-
tively; y,, is the thermoelectric ratio of GT. Due to the limited space, the
remaining constraints can be referred to [24,25], which will not be
described in detail here.

6. Simulation and analysis
6.1. Simulation data

A RIES composed of four sub-regions, including residential area
(RA), commercial area (CA), industrial area (IA) and office area (OA),
shown in Fig 6, is established as an example model to analyze and verify
the HN model and ROOT-CPSPSO. As mentioned above, each sub-region
configures its own CCHP, and each subsystem interacts with EPG
through the pipe network. The curves of PV and WT output power and
various loads on typical days in each sub-region are shown in Fig 7. Fig
7a) and Fig 7b) represent the curves of the corresponding data of RA and
CA, IA and OA, respectively. Equipment and pipeline setting parameters
References [26,27].

6.2. Algorithm comparison test

In this paper, mMPB is used as a test function to compare and analyze
the robustness of ROOT-CPSPSO and other ROOT in solving DOP. The
parameter setting of mMPB is described in [28]. Comparison methods
References [13,14,23,28]. The average survival time and average fitness
results of robust solutions under different ROOT are shown in Fig 8 and
Table 2. Fig 8a) and Fig 8b) show the change curve of the robustness of
the solution of each algorithm corresponding to the mMPB test envi-
ronment under the set fitness threshold parameters. Fig 8c) and Fig 8d)
show the change curve of the robustness of the solution of each algo-
rithm corresponding to the mMPB test environment under the set time
window parameters. From Fig. 8 and Table 2 we know that the
robustness of the solution obtained by ROOT-CPSPSO is better than that
of the other ROOT when dealing with dynamic optimization problems
under different fitness thresholds. Similarly, with the improvement of
the robustness index set by the decision maker, the robustness of the
solutions obtained by each algorithm decreases, but ROOT-CPSPSO can
always filter out the solution with the best robustness due to the wide
distribution of its own particles in the solution space. Under the fitness
threshold equal to 40, the average fitness and solution generation time
of the solution calculated by ROOT-CPSPSO are 58.48 % and 63.07 %

15000 = Industrial area

- o O~ o-©
10000 o O-o0~
6 g q 7 o

‘-Q-Oooooooo /

5000 5 .°-°—°~°-°4-°-°°°°°ﬂ
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0

T T T T T T T 1
8 10 12 14 16 18 20 22 24

Office area
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Power/kW

5000

(L.
2 4 6 8 10 12 14 16 18 20 22 24
Time/h
wT PV =+©-- Electric load =O= Heat load == Cold load

b) Load and PV/WT data of IA and OA

Fig. 7. The PV/WT output and the load curve of each region.
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Fig. 8. The robustness of different ROOT under mMPB.

Table 2
Different ROOT experimental results under mMPB environment.

Algorithm Fitness threshold Time window
40 50 2 4
Jin’s ROOT [28] 1.53 0.71 25.32 22.20
Fu’s ROOT [23] 3.03 1.69 53.48 26.99
P’s ROOT [13] 3.35 1.82 61.88 45.31
Y’s ROOT [14] 3.62 1.95 59.35 47.62
ROOT-CPSPSO 4.07 2.13 72.39 51.79
Table 3

Operation cost composition of RIES and SESS configuration under different
models.

Cost details Mode 1 Mode 2 Mode 3 Mode 4

Electrical energy 15,118.82 18,008.17 14,220.23 16,706.16
purchasing cost ¥ ¥ ¥ ¥

Gas energy purchasing 71,075.07 65,551.29 66,693.63 61,618.52
cost ¥ ¥ ¥ ¥

Operation and 6007.59 ¥ 4825.63 ¥ 6010.79 ¥ 4788.51 ¥
maintenance cost

Total operating cost 92,201.48 88,385.09 86,924.65 83,113.19

¥ ¥ ¥ ¥

higher than those of the existing ROOT, respectively. In summary, on the
basis of combining the advantages of population theory and ROOT
framework, the proposed algorithm improves the robustness to DOP
solutions.

6.3. Analysis of optimal scheduling results under different models

To verify the influence of the HN and proposed methods on the
optimal scheduling results of RIES, the following four modes are
established.

Mode 1: PSO is used for optimization without considering the HN
connection.

Mode 2: PSO is used for optimization while considering the HN
connection.

Mode 3: ROOT-CPSPSO is used for optimization without considering
the HN connection.

Mode 4: ROOT-CPSPSO is used for optimization while considering
the HN connection.

The result of RIES operating costs and SESS capacity configuration
under the above four modes are shown in Table 3. Comparing mode 2
and mode 4, it can be seen that compared with PSO, the total cost of the
system is reduced when ROOT-CPSPSO is used to solve the RES uncer-
tainty problem. Compared with mode 2, the total operating cost of mode
4 is reduced by 6.34 %. At the same time, the capacity configuration of
SESS is increased. Results shows that ROOT-CPSPSO can obtain a more
robust solution and make RIES run under better conditions. Comparing
mode 3 and mode 4, it can be seen that when RIES considers the use of
heat network connection between CCHPs, due to the increase of heat
energy interaction channels, areas with abundant renewable energy can
generate heat energy through electric heating to supply other areas, thus
reducing the cost of RIES gas purchase, so the cost of RIES gas purchase
from EPG is reduced by 8.24 %. The decrease of gas purchase cost leads
to the decrease of operation times and output power of its own gas-
electric coupling equipment. Therefore, it is necessary to purchase
some electric energy from EPG, and the purchase cost of the system
increases by 17.48 %. Due to the interconnection of the equipment, the
peak and valley heat energy has supplemented each other, which re-
duces the operating pressure and further reduces the operation and
maintenance cost of the whole system by 25.53 %. In summary, when
the thermal energy interaction between CCHPs in RIES is considered
through HN, the operating cost of RIES can be reduced by 4.59 %.

6.4. Analysis of heating network condition

The results of the flow rate and heat power of the heat medium in the
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Fig. 9. Result of heat medium flow velocity and heat power of each regional.

HN are shown in Fig. 9, where it is assumed that the heat medium flows
clockwise in Fig. 6 is positive, and vice versa. Fig 9a) shows the flow
velocity of the heat medium in the HN connected to each CCHP; Fig. 9b)
represents the thermal power of each region interacting from the HN.
From the results, we can find that the heat medium flow rate curve is
basically consistent with the heat transfer power curve of the pipe sec-
tion. At the same time, at least one section of the pipeline has no hot
water at any time, which is determined by the ring network structure.
Combined with Fig. 6, we can find that the area with low heat load
mainly wants to heat the HN, while the area with high heat load absorbs
heat energy from the HN. It is worth noting that although both 04:
00-05: 00 and 15:00-18:00 are heat energy transported from RA to IA,
the paths are slightly different, which is mainly due to the randomness of
heat energy transmission.

7. Conclusion

Based on the establishment of a multi-regional RIES model, this
paper establishes the topology of the HN in RIES and models the flow
energy model of the heat network nodes and the energy flow rate model
of the HN pipeline through the Taylor expansion method. At the same
time, considering the excellent distribution of the solution of the pop-
ulation algorithm and the operability of the ROOT in solving DOP, an
improved ROOT based on PSO is proposed, which provides a certain
theoretical and algorithm basis for promoting the application of HN in
actual RIES and improving the economy of RIES operation. Finally, the
following conclusions are obtained through the example verification.

1) The ROOT-CPSPSO proposed can solve the DOP problem well. In the
same test environment, compared with the existing ROOT, the sur-
vival time of the robust solution obtained by the improved ROOT is
increased by 63.07 % on average, and the average fitness is increased
by 58.48 % on average. Using ROOT-CPSPSO can reduce the oper-
ating cost of RIES by 4.58 %.

The proposed HN model fully considers the heat balance constraints
of the HN nodes, and the transportation constraints of the HN
pipelines, and better simulates the actual operation of the HN.
Through the example verification, it can be seen that when the
CCHPs are connected through the HN, the redistribution and transfer
of the heat power inside the RIES can be realized, and the economy of
the system can be further improved. In the case of a district HN, the
operating cost of RIES can be reduced by 6.34 %.

2

—

The HN model proposed in this paper only considers the ideal
operating state of the HN and does not consider the complex environ-
ment faced by the actual operation of the HN. At the same time, the
proposed algorithm is mainly used to solve the single-objective opti-
mization problem. Therefore, the future work is to study the HN model
under complex operating environment and the application of ROOT in

multi-objective dynamic optimization problem.
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